簡易檢索 / 詳目顯示

研究生: 沈家緯
Shen, Chia-Wei
論文名稱: 以粒子影像測速儀與熱線測速儀所得數據進行圓柱近域尾流之紊態流場特性及尺度分析
Investigation of scale and characteristics of the turbulent near-wake flow behind a circular cylinder with the data obtained by PIV and Hot-Wire Anemometry
指導教授: 張克勤
Chang, Keh-Chin
王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 164
中文關鍵詞: 粒子影像測速儀熱線測速儀小波轉換正交特徵分解法相位平均泰勒微尺度諧波
外文關鍵詞: PIV, HWA, POD, Harmonic, Taylor microscale
相關次數: 點閱:123下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別以熱線測速儀(Hot-Wire Anemometry)及粒子影像測速儀(Particle Image Velocimetry) 在高、低雷諾數(〖Re〗_D=3799;9499)下探討二維圓柱體近域尾流區渦流的形成和脫落過程以及小尺度流流場結構。PIV和HWA的取樣頻率均為10 kHz。利用快照特徵正交分解法(Snapshot Proper Orthogonal Decomposition)與PIV數據將紊流結構分成若干頻率子集(subsets)。為了排除背景噪聲且從POD分析的高階模式中選擇正確的尺度紊流結構,需要使用連續小波變換(CWT)分析各階模態對應的時間係數。由於PIV的高取樣頻率(10 kHz),快照POD不僅可以描述尾流渦流脫落過程相關的相干性大尺度結構(第一對低階模式),還可以表徵泰勒微尺度的相干性結構(二、三次諧波高階模態)。本研究利用HWA數據通過自相關函數分析驗證高階模式的尺度是否達到泰勒微尺度,如下式:
    ├ (d^2 R)/(dτ^2 )┤|_(τ=0)=(-2)/γ^2
    式中γ為泰勒微尺度,結果顯示使用上式所得數據卻能佐證流場之泰勒微尺度。在雷諾數分別為3,799和9,499下,本研究比較二維近域尾流大尺度與小尺度的重建結果並且討論之。
    關鍵字:粒子影像測速儀、熱線測速儀、小波轉換、正交特徵分解法、相位平均、

    The vortex formation and shedding process of air flow in the near wake region of a long circular cylinder, which is in nature a 2-D flow, is studied by means of a high-speed particle image velocimetry (PIV) and an X-type hot wire anemometry (HWA). Two cases with Reynolds numbers of 3,799 and 9,499 which are of turbulent flows but in the subcritical wake regime, are investigated. Both sampling rates of the employed PIV and HWA are 10 kHz. The snapshot proper orthogonal decomposition (POD) is applied with the PIV data to separate the turbulence structure into a number of subsets of frequency. To select correctly small-scale turbulence structures instead of background noise from the high-order modes of POD analysis, the time coefficients to which the high-order modes correspond have to be analysed using continuous wavelet transform (CWT). Due to the high sampling rate (10 kHz) of PIV, the snapshot POD can characterize not only the coherent large-scale structure (the first pair low-order modes), that is associated with the wake vortex shedding process, but also the Taylor microscale, which is of high-order mode in this study. Identification of the high-order mode of Taylor microscale in each case is made with the support through the auto-correlation function R(τ) made with the HWA data by the following formula
    ├ (d^2 R)/(dτ^2 )┤|_(τ=0)=(-2)/γ^2
    where γ is the Taylor microscale. Different reconstruction results of the 2-D near wakes obtained from two Reynolds numbers of 3,799 and 9,499 are compared and discussed.
    Key words: PIV; HWA; POD; Harmonic; Taylor microscale

    第一章 緒論............................................. 1 1-1 前言........................................... 1 1-2 文獻回顧 ........................................3 1-2-1 熱線測速儀量測原理(Hot-Wire Anemometry, HWA)....... 4 1-2-2 粒子影像測速法.................................... 5 1-3 研究背景與目標......................................16 第二章 實驗設備與模型....................................18 2-1 風洞及供氣系統......................................18 2-2測試段模型...........................................18 2-3 移動機構............................................19 2-4 校正儀器............................................19 2-4-1 壓力校正器 .......................................19 2-4-2 壓力轉換器 .......................................19 2-5 熱線測速儀系統......................................19 2-5-1 熱線探針..........................................20 2-5-2 熱線測試儀主機....................................20 2-5-3 熱線模組(熱線測速儀)..............................21 2-5-4 資料擷取系統......................................21 2-5-5 Streamline應用軟體(Stream Ware)...................21 2-6 粒子影像測速儀系統..................................22 2-6-1 高速攝影機........................................22 2-6-2 雷射及光學鏡組....................................22 2-6-3 追蹤粒子..........................................22 2-6-4 拍攝鏡頭..........................................23 第三章 實驗方法與分析....................................24 3-1 實驗方法............................................24 3-1-1 熱線測速法........................................24 3-1-2粒子影像測速法.....................................25 3-2 實驗規劃與流程......................................26 3-2-1熱線測速法(HWA)....................................27 3-2-2粒子影像測速儀(PIV)................................27 3-3 數據分析............................................29 3-3-1 圓柱尾流之紊流特性................................29 3-3-2 尺度分解(Decomposition by scale)..................33 3-4誤差分析.............................................39 第四章 結果與討論.......................................41 4-1 統計量分析..........................................42 4-2 熱線測速儀量測結果..................................43 4-3 粒子影像測速儀量測結果...............................44 4-4 POD分析............................................46 4-5 泰勒微尺度分析與探討.................................50 4-5 POD與phase average.................................51 第五章 結論.............................................56 參考文獻................................................59

    1. 李冠篁 (2012),「重新定義平板混合紊流中混合層之特徵長度」,國立成功大學航空太空研究所碩士論文。
    2. 施柏帆 (2013),「PIV應用於紊流場之定量量側與誤差分析」,國立成功大學航空太空研究所碩士論文。
    3. Adrian. R. J., 1991, “Particle-image techniques for experimental fluid mechanics,” Annual Review of Fluid Mechanics 23, pp. 261-304.
    4. Adrian, R. J., Yao C. S., 1985, “Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials,” Applied Optics 24, pp.44-52.
    5. Adrian, R. J., Christensen, K. T. Liu, Z. C., 2000, “Analysis and interpretation of instantaneous turbulent velocity fields,” Experiment in Fluids 29, pp. 275-290.
    6. Adrian, R. J., 1986, “Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry,” Applied Optics 1, pp. 3855-3858
    7. Agu ̈i, J. C., Jime ́nez J., 1987, “On the performance of particle tracking,” Journal of Fluid Mechanics 185, pp.447-468
    8. Boillot, A., Prasad, A. K., 1996, “Optimization procedure for pulse separation in cross-correlation PIV,” Experiments in Fluids 212, pp. 87-93
    9. Cantwell, B., Coles, D., 1983, “An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder,” J. Fluid Mech 136, pp.321-374
    10. Durao, D. F. G., Heitor, M. V., Pereira, J. C. F., 1988, “Measurements of turbulent and periodic flows around a square cross-section cylinder,” Exp Fluids 6, pp.298–304
    11. Gharib, M., Hernan, M. A., Yavrouia, A.H., Sarohia, V., 1985, “Flow velocity measurement by image processing of optically activated tracers,” AIAA Paper No. 85-0172.
    12. Bakewell, H. P., Lumley, J. L., 1967, “Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow,” The Physics of Fluids 10, 1880
    13. Hecht, E., Zajac, A., 2001, Optics, Massachusetts: Addison-Wesley Pub. Company.
    14. Huang, H.T., Fiedler, H.E., Wang, J.J., 1993, “Limitation and improvement of PIV. Part I: Limitation of conventional techniques due to deformation of particle image patterns,” Experiments in Fluids 15, pp. 168-174.
    15. Kostas, J., Soria, J., Chong, M. S., 2005, “A comparison between snapshot POD analysis of PIV velocity and vorticity data,” Experiment in Fluids 38, pp.146-160.
    16. Franke, J. Frank, W., 2002, “Large eddy simulation of the flow past a circular cylinder at Re_D=3900,” Journal of Wind Engineering and Industrial Aerodynamics 90, pp.1191-1206
    17. Jambunathan, K., Ju, X. Y., Dobbins, B. N., Ashcroft-Frost, S., 1995, “An improved cross correlation technique for particle image velocimetry,” Measurement science and technology 6, pp. 507-514
    18. Keane, R. D., Adrian, R. J., 1992, “Theory of cross-correlation analysis of PIV images,” Applied Scientific Research 49, pp.191-215.
    19. Keane, R. D., Adrian, R. J., 1990, “Optimization of particle image velocimeters. I. Double pulsed systems,” Measurement and Science and Technology 1, pp. 1202-1215.
    20. Keane, R. D., Adrian R. J., Zhang, Y., 1995, “Super-resolution particle image velocimetry,” Measurement science and technology 6, pp. 754-768.
    21. Kourta, A., Boisson, H.C., Chassaing, P., Minh, H.H., 1987, “Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder,” J Fluid Mech 181, pp.141–161
    22. Kim K. C., Lee M. B., Yoon S. Y., Boo J. S. and Chun H. H., 2002, “Phase Averaged Velocity Field in the Near Wake of a Square Cylinder Obtained by a PIV Method,” Journal of Visualization 5, pp. 29-36
    23. Leder, A., 1991, “Dynamics of fluid mixing in separated flows,” Phys Fluids A 37, pp.1741–1748
    24. Lyn, D. A., Einav, S., Rodi, W., Park, J.H., 1995, “A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder,” J Fluid Mech 304, pp. 285–319
    25. Melling, A., 1997, “Tracer particles and seeding for particle image velocimetry,” Measurement science and technology 8, pp. 1406-1416
    26. Najafinia, S., Montazerin, N., Kalaei, H., 2015, “Investigation of Structures in a highly turbulent mixing layer by using LDA and SPIV,” The Aeronautical Journal-2005-4551.
    27. Persillon, H., Braza, M., 1998, “Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier–Stokes simulation,” J. Fluid Mech 365, pp. 23-88
    28. Parnaudeau, P., Carlier, J., Heitz, D., Lamballais E., 2008, “Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900,” PHYSICS OF FLUIDS 20, 085101
    29. Popovich, A. T., Hummel, R. L., 1967, “A new method for non-disturbing turbulent flow measurements very close to a wall,” Chemical Engineering Science 22, pp. 21-25
    30. Perrin, R., Braza, M., Cid, E., Cazin, S., Barthet, A., Sevrain, A., Mockett, C., Thiele, F., 2007, “Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD,” Experiment in Fluids 43, pp. 341-355.
    31. Rinoshika, A., Watanabe, S., 2010, “Orthogonal wavelet decomposition of turbulent structures behind a vehicle external mirror,” Experimental Thermal and Fluid Science 34, pp.1389-1397
    32. Ricka, J., 1987, “Photo bleaching velocimetry,” Experiment in Fluids 5, pp. 381-384
    33. Reynolds W. C., Hussain A. K. M. F., 1972, “The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments,” J Fluid Mech 54, pp. 263–288
    34. Raffel, M., Willert, C. E., Wereley, S., Kompenhans, J., 2007, Particle Image Velocimetry: A Practical Guide, Springer
    35. Rinoshika, A., Omori, H., 2011, “Orthogonal wavelet analysis of turbulent wakes behind various bluff bodies,” Experimental Thermal and Fluid Science 35, pp.1231-1238
    36. Tennekes, H., Lumley, J. L., 1972, A First Course in Turbulence, The Massachusetts institute of Technology
    37. Van Oudheusden, B. W., Scarano, F., Van Hinsberg, N. P., Watt, D. W., 2005, “Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence,” Experiment in Fluids 39, pp.86-98
    38. Williamson, C. H. K., 1992, “The natural and forced formation of spot-like ‘vortex dislocations’ in the transition of a wake,” J. Fluid Mech 243, pp. 393-441
    39. Zhang, Q., Liu, Y., Wang, S., 2014, “The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition,” Journal of Fluids and Structures 49, pp. 53-72.
    40. Utami, T., Blackewlder, R. F., Ueno, T., 1991, “A cross-correlation technique for velocity-field extraction from particulate visualization,” Experiments in Fluids 10, pp. 213-223.
    41. Westerweel, J., 1997, “Fundamentals of digital particle image velocimetry,” Measurement science and technology 8, pp. 1379-1392
    42. Willert, C. E., Gharib, M., 1991, “Digital particle image velocimetry,” Experiments in Fluids 10, pp. 181-193
    43. Westerweel, J., 1993, Digital Particle Image Velocimetry: Theory and Application, Delft, The Netherlands: Delft University Press.
    44. Westerweel, J. and Scarano, F., 2005, “Universal outlier detection for PIV data,” Experiments in Fluids 39, pp. 1096-1100.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE