簡易檢索 / 詳目顯示

研究生: 林峻毅
Lin, Chun-yi
論文名稱: 訊號隸屬排序中值權重濾波器結合模糊理論的抑制突波雜訊濾波器
A signal dependent rank order median weighting filter combined with fuzzy theorem for impulse noise suppression
指導教授: 雷曉方
Lei, Shiau-fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 60
中文關鍵詞: 突波雜訊模糊理論影像
外文關鍵詞: Fuzzy, Impulse Noise, Image
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳輸一影像時,受限於傳輸頻寬的限制,當傳輸品質非常差的時候,因為接收端的門檻效應而使得對影像造成突波雜訊,使得接收者對於影像的辨識度變差。傳統上我們使用中值濾波器來消除這種雜訊,然而此種方法會對影像的細節造成傷害。因此以切換方式為概念的排序統計型濾波器被廣泛的使用來改善去除雜訊時對影像所造成的破壞;其特點乃是利用周圍圖素的特徵,找出最相近原始圖素的數值來取代被污染的圖素同時又盡量保有影像的細節。適用的方法有SD-ROM[3]、SM[18]、New Efficient[31]、Fuzzy filter[32]與MMEM[10]等…濾波器。
    所提出的方法乃是以New Efficient[31]這篇為架構,加入模糊理論的概念,目的就是要改進原作者的方法在遇到雜訊圖素跟周圍圖素差異不大時,在門檻值選擇上的困難處,以及在處理影像邊緣與細線條時容易產生因門檻值選擇不當而造成判斷錯誤的情況,進而造成還原回來的效果變差。我們透過模糊法則來描述雜訊的存在程度來改善,並且參考MMEM[10]的方法對影像灰階值為0跟255時的雜訊做改進,最後結合在一起以得到較原先作者對於處理突波雜訊更高之效能。實驗結果圖形可以看到對於影像細部的改進之處,以及PNSR與COR數據上的改善。

    In transmission an image in channel, due to a limited of bandwidth, if the channel is so poor that the noise variance is high enough to make the threshold operation done at the front end of the receiver will contribute to impulse noise on images. Traditionally, median filter are used to suppressing this kind of noise but induced the damage on image details. An ordered statistics filter based on switching scheme is popularly used to improve the damage on image detail when we are de-noising; the central concept of the ordered statistics filter based on switching scheme is by use the characteristic of surrounding pixels to find out the most similar value for replace the noisy pixel. The SD-ROM[3], SM[18], New Efficient[31], Fuzzy filter[32] and MMEM[10]…etc.
    The proposed method is based on the structure of New Efficient[31], also including the fuzzy concept in order to improve the difficult to get threshold when the difference of noisy pixel and surrounding pixels is not large, and an error judgment may occurred because of the misfit threshold when processing image details and thin lines. Theses situations may cause the poor performance on reducing images. By judgment the existence of impulsive noise is expressed by fuzzy rules for improvement, and referenced the MMEM filter[10] for improve the salt and pepper noise. By combine these methods to get better performance than the New Efficient algorithm. Simulation results can show the improving part in images and also on PSNR and COR value.

    摘要 i ABSTRACT ii OUTLINE iii LIST OF TABLES v LIST OF FIGURES vi CHAPTER 1 - INTRODUCTION 1 1.1. Literature Survey & Compared 1 1.1.1. Discussion of Survey result 1 1.1.2. Introduction of proposed Architecture 4 1.2. Motivation 5 1.3. Organized of Thesis 5 CHAPTER 2 – NOISE IN IMAGES 7 2.1. Some Basic Relationship between Pixels 7 2.1.1. Regions, Boundaries 7 2.1.2. Linear and Nonlinear Operations 7 2.2. Noise in Images 8 2.2.1. Where Noises Come From? 8 2.2.2. Salt and Pepper Noise 8 2.2.3. Random Value Noise 9 2.2.4. Mixed Salt and Pepper Noise and Random Value Noise 10 CHAPTER 3 – POPULAR FILTERS 12 3.1. Mean and Median filters 12 3.2. Order Statistics Filters 14 3.3. Switching Median (SM) filter 16 3.3.1. Switching Schema 16 3.3.2. Switching Median filter 17 CHAPTER 4 –FILTERS FOR IMPULLSE NOISE REMOVAL 19 4.1. ROM filter 19 4.2. Switching Median filter with New Detector 22 4.3. Minimum-Maximum Exclusive Mean Filter 23 4.4. Fuzzy Random Impulse Noise Reduction Method 25 4.4.1. Detection Method 25 4.4.2. Filtering Method 29 4.5. A New Efficient Impulse Detection Algorithm for the Removal of Impulse Noise 31 4.6. The Proposed Algorithm for Impulse Noise Removal 34 4.6.1. Proposed Noise Removal Algorithm 34 4.6.2. Select the Suitable Membership Function for Fuzzy 36 4.6.3. Discussion 38 CHAPTER 5 – SIMULATION RESULT & COMPARASION 39 5.1. Image Metrics 39 5.2. Noise Model 40 5.2.1. Test Images 40 5.2.2. Noise Level 42 5.3. Implement Detail 42 5.4. Performance Evaluation 42 CHAPTER 6 – CONCLUSIONS AND FUTURE WORKS 55 6.1 Conclusions 55 6.2 Future Works 55 REFERENCE 56 Curriculum Vita 60

    [1] C. Gonzalez, E. Woods, “Digital Image Processing”, Second Edition, University of
    Tennessee. 2002 Interactive Prentice Hall.
    [2] S. Meher, “Development of Some Novel Nonlinear and Adaptive Digital Image Filters
    for Efficient Noise Suppression”, National Institute of Technology, Orissa India, 2004.
    [3] E. Abreu , M. Lightstone, S. K. Mitra and K. Arakawa “A New Efficient Approach for
    the Removal of Impulse Noise from Highly Corrupted Images”, IEEE Trans. on Image
    Processing, Vol. 5, No. 6, pp.1012-1025 ,1996
    [4] E Abreu, SK Mitra, "Signal-dependent rank-ordered mean (SD-ROM) filters for
    removal of impulses from highly corrupted images," Proc. IEEE International Conference
    on Acoustics, Speech & Signal Processing, Detroit, MI, May 1995, pp. 2371-2374 .
    [5] M Lightstone, E Abreu, SK Mitra, K Arakawa , "State-conditioned rank-ordered
    filtering for removing impulse noise in images," Proc. IEEE International Symposium on
    Circuits & Systems, Seattle, WA, May 1995, pp. 957-960.
    [6] TH Yu and SK Mitra, “Detail-preserving impulse noise removal of images using
    modified dynamic programming,” in Proc. /990 mt. Conf Acoust., Speech Signal
    Processing, 1990, vol. 4, pp. 1881-1884.
    [7] Y Wang, SK Mitra – Acoustics,” Edge preserving image coding based on local
    modeling of images”, Acoustics, Speech, and Signal Processing, 1988. ICASSP, pp.
    1320-1323 vol.2.
    [8] SK Mitra, TH Yu, and R. Ali, “Efficient detail-preserving method of impulse noise
    removal from highly corrupted images,” Image Video Process. (SPIE), vol. 2182, pp.
    43–48, 1994.
    [9] N Strobel, SK Mitra, "Quadratic filters for image contrast enhancement," Proc. 28th
    57
    Annual Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA,
    November 1994, pp. 208-212 (with N. Strobel).
    [10] W-Y. Han and J-C. Lin, “Minimum-maximum exclusive mean (MMEM) filter to
    remover impulse noise from highly corrupted images”, IEE, Electronics Letters, vol. 33,
    No. 2, pp 124-125, Jan 1997.
    [11] M. Ma, X. Jiao and X. Tan, “Fuzzy Hybrid filter for Removal of Impulsive Noise
    from Highly Corrupted Images”, Proceeding of IEEE Conf. TENCON”02 pp.885-888.
    [12] V. Crnojevic, “Impulse noise filter with adaptive MAD-based threshold”, ICIP 2005,
    Volume: 3, On page(s): III- 337-40
    [13] V. Crnojevic, V. Senk and Z. Trpovski, “Advanced Impulse Detection Based on
    Pixel-Wise MAD”, IEEE Signal Proc. Lett., vol.-11, No.-7, pp. 589-592, July 2004.
    [14] N. C. Gallagher Jr and G.W.Wise, “A theoretical analysis of the properties of median
    filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-29, pp. 1136–1141,
    Dec. 1981.
    [15] T. S. Huang, G. J.Yang, and G.Y. Tang, “A fast two-dimensional median filtering
    algorithm,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-27, pp. 13–18, Feb.
    1979.
    [16] P. Huber, “Robust Statistics". New York: Wiley, 1981.
    [17] Rousseeuw PJ, Croux C. “Alternatives to the median absolute deviation”. Journal of
    American Statistical Association, 1993, Vol. 88, pp. 1273-1283.
    [18] S. Zhang and M. A. Karim, “A new Impulse Detector for Switching Median Filters”,
    IEEE Signal Processing Letters, vol. 9, no.11, pp.360-363, Nov 2002.
    [19] T. Chen, K.-K. Ma, and L.-H. Chen, “Tri-state median filter for image de-noising,”
    IEEE Trans. Image Processing, vol. 8, pp. 1834–1838, Dec. 1999.
    [20] Z. Wang and D. Zhang, “Progressive switching median filter for the removal of
    58
    impulse noise from highly corrupted images,” IEEE Trans. CircuitsSyst. II, vol. 46, pp.
    78–80, Jan. 1999.
    [21] Russo F., and Ramponi G., “A Fuzzy Filter for Images corrupted by Impulse Noise”,
    IEEE Signal Processing Letters, vol-3, no. 6, pp. 168-170, June 1996.
    [22] F. Russo and G. Ramponi, "A Fuzzy Operator for the Enhancement of Blurred and
    Noisy Images", IEEE Trans.on Image Processing, vol.4, no.8, August, 1995.
    [23] OH Jinsung, LEE Changhoon, KIM Younam, “Minimum-Maximum Exclusive
    Weighted-Mean Filter with Adaptive Window” Transactions on Fundamentals of
    Electronics, Communications and Computer Sciences 2005 E88-A(9):2451-2454.
    [24] S. J. Ko, Y.H. Lee, “Centre weighted Median Filters and their Applications to Image
    Enhancement”, IEEE Trans. on Circuits and Systems, vol. 38, pp. 984-983, September
    1991.
    [25] H. G. Longotham and A.C. Bovik, “Theory of Order Statistics Filters and Their
    Relationship to Linear FIR Filters”, IEEE Trans. on Acoust. Speech, Signal Processing, vol.
    ASSP-37, no.2, pp. 275-287, February 1989.
    [26] Y Dong, RH Chan, S Xu, “A Detection Statistic for Random-Valued Impulse Noise”,
    Image Processing, IEEE Transactions on, 2007, Volume: 16, Issue: 4 On page(s):
    1112-1120.
    [27] A. Kundu. SK Mitra, and pp Vaidyanathan, “Application of two- dimensional
    generalized mean filtering for removal of impulse noises from images,” IEEE Trans.
    Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 600–609, June 1984.
    [28] L. A. Zadeh, “Fuzzy Sets”, Information and control, vol.8, pp. 338-353, 1965.
    [29] J. W. Tukey, “Experimental Data Analysis”, Reading, M. A: Addison- Wesley; 1971.
    [30] L. Naaman and A. C. Bovik, “Optimal order statistics filters with coefficient
    censoring” in Proc. IEEE Int. Conf. Accoust. , Speech, Signal Processing, New York, Apr.
    59
    11-14, 1988.
    [31] Wenbin LUO, “A New Efficient Impulse Detection Algorithm for the Removal of
    Impulse Noise” in IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.10 OCTOBER
    2005
    [32] Stefan Schulte∗,etc, “Fuzzy random impulse noise reduction method”, Fuzzy Sets and
    Systems, Elsevier Science, 158 (2007) 270–283.
    [33] M. E. Yüksel and E. Bes﹐dok, “A simple neuro-fuzzy impulse detector for efficient
    blur reduction of imuplse noise removal operators for digital images,” IEEE Trans. Fuzzy
    Syst., vol. 12, no. 6, pp. 854–865, Dec. 2004.
    [34] Kaoru, Arakawa, “Median filter based on fuzzy rules and its application to image
    restoration”, Fuzzy Sets and Systems, Elsevier Science, 77 (1996) 1-13.
    [35] Igor Aizenerg, C. butakoff, “Effective Impulse Detector Based on Rank-Order
    Criteria”, IEEE SIGANL PROCESSING LETTERS, VOL. 11, NO. 3, MARCH 2004.

    下載圖示 校內:2010-02-14公開
    校外:2010-02-14公開
    QR CODE