| 研究生: |
黃品樺 Huang, Pin-Hua |
|---|---|
| 論文名稱: |
永磁游標電機考量鐵損與齒槽轉矩建模 Modeling of Permanent Magnet Vernier Machine with Core Loss and Cogging Torque Considerations |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 共同指導教授: |
陳盛基
Chen, Seng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 永磁電機 、游標電機 、鐵損 、齒槽轉矩 、雙埠網路 |
| 外文關鍵詞: | Permanent Magnet Vernier Machine, Core Loss, Cogging Torque, Two Port Network, PMSM |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人們對高功率密度的要求不斷提高以及環保意識增長,永磁電機(PM Machine)最近已被用於多種工業應用,包括機器人、風力渦輪機、航空航太和電動車 (EV)。由於傳統電機模型中為了方便計算,假設中簡化了鐵芯損失與齒槽轉矩等因素,然而在啟動及低速運轉時,齒槽轉矩影響速度表現;在工作在高速和高頻下,導致高功率損耗和溫升,正確考慮功率損失在建模至關重要。
本文將針對兩款永磁電機-永磁游標電機與永磁同步電機進行鐵損與齒槽轉矩探討,引入無載有限元素方法(FEM)搭配數據分析進行建模,在鐵損模型中採用曲線擬合(Curve-Fitting)等效鐵損電阻;而在齒槽轉矩建模中採用傅立葉轉換(FFT)數據進行建模。為了符合使電機模擬通用性,更將電機模型結合雙埠網路架構(Two Port Network)建立在模型在環(MIL)中。
建立之電機模型可顯示電機各項特性,如:磁性電機齒輪比、鐵損、齒槽轉矩等;並且透過鐵損實測證實所提出鐵損建模之準確性。綜合來說,透過此建模架構可使永磁電機模擬環境開發更為便利且精準。
With increasing demands for high power density electric motor and the growing environmental awareness on climate changes, permanent magnet motors have become a sort of electric machine across various industrial applications, including robotics, wind turbines, aerospace, and electric vehicles (EVs). To facilitate calculations in the traditional motor model, factors such as core loss and cogging torque are simplified as assumptions. However, during startup and low-speed operation, cogging torque affects the speed performance of electric machines; likewise, when operating at high speed and high frequency lead to more loss and temperature rise in the electric machine. It is crucial to correctly consider power loss due to core loss and cogging torque in electric machine modeling.
This article will discuss the core loss and cogging torque of two permanent magnet motors - Permanent Magnet Vernier Machine and Permanent Magnet Synchronous Machine. The finite element method (FEM) and data analysis will be employed for modeling. In the core loss model, Curve-Fitting equivalent iron loss resistance is used; while in cogging torque modeling, Fourier transform (FFT) is used for the modeling. Two Port Network framework is used to improve visualization and better understanding of the motor model developed for the model-in-the-loop (MIL) simulation.
The motor modelling using Two Port Network framework provides clarity by showing various characteristics of the motor, such as iron loss, cogging torque, magnetic gear effect etc. The accuracy of the proposed core loss modeling is verified through no load test of the electric machine. In summary, this modeling framework makes the development of permanent magnet motor simulation environment more convenient and accurate.
[1] Liu, J., & Chen, W.L. (2013). Generalized DQ model of the permanent magnet synchronous motor based on extended park transformation. 2013 1st International Future Energy Electronics Conference (IFEEC), 885-890.
[2] Precedence Research Pvt. Ltd, Permanent Magnet Motor Market Size, Trends, Growth, Report 2032. September 2023. Available from:
https://www.precedenceresearch.com/permanent-magnet-motor-market
[3] Ruichao Tao, Jie Ma, Hui Zhao, "Torque Ripple Minimization in PMSM Based on an Indirect Adaptive Robust Controller", Mathematical Problems in Engineering, vol. 2017, Article ID 9512351, 10 pages, 2017.
[4] Engineering Village, Year of high fidelity model, Available from: https://www.engineeringvillage.com/search/quick.url?SEARCHID=5ca4c805a9424d2a926d7e61033d919a&COUNT=1&usageOrigin=&usageZone=#foo
[5] R. S. Colby and D. W. Novotny, "Efficient Operation of Surface-Mounted PM Synchronous Motors," in IEEE Transactions on Industry Applications, vol. IA-23, no. 6, pp. 1048-1054, Nov. 1987, doi: 10.1109/TIA.1987.4505028.
[6] Elsherbiny, Hanaa, et al. "High accuracy modeling of permanent magnet synchronous motors using finite element analysis." Mathematics 10.20 (2022): 3880.
[7] X. Chen, J. Wang, B. Sen, P. Lazari and T. Sun, "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect," in IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4044-4055, July 2015, doi: 10.1109/TIE.2014.2388200.
[8] X. Li, K. T. Chau and M. Cheng, "Comparative analysis and experimental verification of an effective permanent-magnet vernier machine", IEEE Trans. Magn., vol. 51, no. 7, Jul. 2015.
[9] D. Li, R. Qu and T. A. Lipo, "High-power-factor Vernier permanent-magnet machines", IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3664-3674, Nov./Dec. 2014.
[10] X. Yin, Y. Fang, X. Huang and P. -D. Pfister, "Analytical Modeling of a Novel Vernier Pseudo-Direct-Drive Permanent-Magnet Machine," in IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-4, June 2017, Art no. 7207404, doi: 10.1109/TMAG.2017.2660241.
[11] H. Zhao, C. Liu, Z. Song and W. Wang, "Exact Modeling and Multiobjective Optimization of Vernier Machines," in IEEE Transactions on Industrial Electronics, vol. 68, no. 12, pp. 11740-11751, Dec. 2021, doi: 10.1109/TIE.2020.3044785.
[12] Mathwork.com ,「abc to dq0, dq0 to abc」,Available from: https://www.mathworks.com/help/sps/powersys/ref/abctodq0dq0toabc.html ,檢索日期:2023/10/27
[13] 張啟洋,「IPM 同步馬達之電感模型推導」,馬達電子報,國立成功大學馬達科技中心,第1001期,2022.
[14] Cadence System Analysis,「Two-Port Impedance Model and Z-Parameters」,Available from:https://resources.system-analysis.cadence.com/blog/msa2020-two-port-impedance-model-and-z-parameters,檢索日期:2023/11/17
[15] Tsai, Mi-Ching, and Da-Wei Gu. "Robust and optimal control." Advances in Industrial Control 33.97 (2014): 2095-2095.
[16] Neoloso, C. "Enhanced mathematical modelling of interior permanent magnet synchronous machines for loss minimization control." (2020).
[17] V. B. Honsinger, "Performance of Polyphase Permanent Magnet Machines," in IEEE Transactions on Power Apparatus and Systems, vol. PAS-99, no. 4, pp. 1510-1518, July 1980, doi: 10.1109/TPAS.1980.319575.
[18] X. Ba, Y. Guo, J. Zhu and C. Zhang, "An Equivalent Circuit Model for Predicting the Core Loss in a Claw-Pole Permanent Magnet Motor With Soft Magnetic Composite Core," in IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-6, Nov. 2018.
[19] S. Hlioui et al., "Hybrid Excited Synchronous Machines," in IEEE Transactions on Magnetics, vol. 58, no. 2, pp. 1-10, Feb. 2022, Art no. 8101610, doi: 10.1109/TMAG.2021.3079228.
[20] X. Ba, Y. Guo, J. Zhu and C. Zhang. Development of Equivalent Circuit Models of Permanent Magnet Synchronous Motors Considering Core Loss. Energies 2022, 15, 1995.
[21] G. Bertotti, “Hysteresis in Magnetism,” Academic Press, Boston, 1998.
[22] Z. Q. Zhu and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," in IEEE Transactions on Energy Conversion, vol. 15, no. 4, pp. 407-412, Dec. 2000, doi: 10.1109/60.900501.
[23] L. Dosiek and P. Pillay, "Cogging Torque Reduction in Permanent Magnet Machines," in IEEE Transactions on Industry Applications, vol. 43, no. 6, pp. 1565-1571, Nov.-dec. 2007, doi: 10.1109/TIA.2007.908160.
[24] Faiz, Jawad, et al. "Single stator‐single rotor permanent magnet Vernier machine topologies for direct‐drive applications: Review and case study." International Transactions on Electrical Energy Systems 31.12 (2021): e13240.
[25] 張洋、黃明明,「新型永磁游標電機設計與分析」,第65頁,黃河水利出版社,民國107年。
[26] T. Tudorache, I. Trifu, C. Ghita, V. Bostan, "Improved Mathematical Model of PMSM Taking Into Account Cogging Torque Oscillations," Advances in Electrical and Computer Engineering, vol.12, no.3, pp.59-64, 2012, doi:10.4316/AECE.2012.03009
[27] Dini, Pierpaolo. (2019). Cogging Torque Reduction in Brushless Motors by a Nonlinear Control Technique. Energies. 12. 2224. 10.3390/en12112224.
[28] Hwang, M.-H.; Lee, H.-S.; Yang, S.-H.; Lee, G.-S.; Han, J.-H.; Kim, D.-H.; Kim, H.-W.; Cha, H.-R. Cogging Torque Reduction and Offset of Dual-Rotor Interior Permanent Magnet Motor in Electric Vehicle Traction Platforms. Energies 2019, 12, 1761.
[29] Anuja, T.; Doss, M. Reduction of Cogging Torque in Surface Mounted Permanent Magnet Brushless DC Motor by Adapting Rotor Magnetic Displacement. Energies 2021, 14, 2861.
[30] Ueda, Y.; Takahashi, H. Cogging Torque Reduction on Transverse-Flux Motor with Multilevel Skew Configuration of Toothed Cores. IEEE Trans. Magn. 2019, 55, 8203005.
[31] D.Y. Ohm, “Dynamic Model of PM Synchronous Motors”, Drivetech Inc., Blacksburg, Virginia, www.drivetech.com. 檢索日期:2023/11/25
[32] 簡伸翰。「應用於電動滑板車之輪轂式游標永磁馬達設計與實現」。碩士論文,國立成功大學電機工程學系,2021。
[33] K. Atallah, Jiabin Wang, S. D. Calverley and S. Duggan, "Design and operation of a magnetic Continuously Variable Transmission," 2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada, 2011, pp. 312-317, doi: 10.1109/IEMDC.2011.5994866.
[34] S. -H. Park, E. -C. Lee, J. -C. Park, S. -W. Hwang and M. -S. Lim, "Prediction of Mechanical Loss for High-Power-Density PMSM Considering Eddy Current Loss of PMs and Conductors," in IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-5, Feb. 2021, Art no. 6300205, doi: 10.1109/TMAG.2020.3007439.
[35] Lee, J.-H.; Sung, S.; Cho, H.-W.; Choi, J.-Y.; Shin, K.-H. Investigation of Electromagnetic Losses Considering Current Harmonics in High-Speed Permanent Magnet Synchronous Motor. Energies 2022, 15, 9213.
[36] Nicolas Denis, Yoshiyuki Kato, Masaharu Ieki, Keisuke Fujisaki; Core losses of an inverter-fed permanent magnet synchronous motor with an amorphous stator core under no-load. AIP Advances 1 May 2016; 6 (5): 055916.
[37] 秦威瑟,「Coaxial Magnetic Gear Model」,研究報告,2023年四月
校內:2029-01-18公開