簡易檢索 / 詳目顯示

研究生: 李志賢
Li, Jhih-Sian
論文名稱: 應用於獵能系統之升壓-返馳式轉換器控制晶片
Control IC for Boost-Flyback Converter in Energy Harvesting Applications
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 57
中文關鍵詞: 獵能系統高升壓轉換器升壓型返馳式轉換器
外文關鍵詞: energy harvesting system, high step-up converter, boost-flyback converter
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統上應用於高升壓獵能系統之轉換器為升壓轉換器,由於架構的限制,必須將升壓轉換器操作在不連續導通模式,因此會造成較大的導通損失以及開關需要承受較大的電流應力。本論文提出一應用於獵能系統之升壓型返馳式轉換器控制晶片,藉由升壓轉換器與返馳式轉換器的疊接可以大幅度提高電壓轉換比。此外,此架構可以將耦合電感所產生之漏感能量回收至負載,因此可以提升效率以及減少開關上的應力。本篇所提出之控制利用電壓回授控制來調控輸出電壓達到穩壓的效果。最後,本控制晶片使用TSMC 0.25 μm CMOS 高壓製程實現並將其應用於一輸入電壓0.2-0.3 V,輸出電壓5 V,輸出功率為20 mW的升壓型返馳式電源轉換器以驗證此控制晶片的特性。

    Conventionally, boost converter is used for high step-up energy harvesting system, but it is needed to be operated in discontinuous conduction mode (DCM) because of the limitation of the topology. Therefore, it causes more conduction loss and current stress on the switch. In this thesis, the control IC for boost-flyback converter in energy harvesting applications is proposed. It can greatly increase the voltage conversion ratio with the cascode of boost converter and flyback converter. In addition, this topology can recycle the energy of the leakage inductance produced from coupled inductor to load. Thus, the efficiency can be increased and the stress on the main switch can be reduced. Finally, this controller is fabricated with TSMC 0.25 μm CMOS high voltage mixed signal general purpose process. The boost-flyback converter with input voltage of 0.2-0.3 V, output voltage of 5 V and output power of 20 mW is implemented to verify the feasibility of the proposed controller.

    Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization 4 Chapter 2 Introduction of Energy Harvesting Technology and Control Methods for Energy Harvesting System 5 2.1 Introduction of Energy Harvesting Technology 5 2.2 Converters for Energy Harvesting Technology 7 2.3 Control Methods of Boost Converter for Energy Harvesting Applications 8 2.4 Introduction of the Boost-Flyback converter 11 2.4.1. Operating Principle of Boost-Flyback Converter 12 2.4.2. Steady State Analysis of Boost-Flyback Converter 14 Chapter 3 Analysis and Design of the Proposed Controller 19 3.1 Introduction of the Proposed Control 19 3.2 Introduction and Design of the Control Function Blocks 20 3.2.1. Under Voltage Lock Out (UVLO) 22 3.2.2. Oscillator 23 3.2.3. Compensator 24 3.2.4. Protection Circuit 25 3.2.5. PWM Circuit 26 3.2.6. HV Buffer 28 3.3 CMOS Circuit Design 29 3.3.1 Two-Stage Op-Amp 29 3.3.2 Comparator 32 3.3.3 Edge Detector 36 3.4 Chip Layout 38 Chapter 4 System Simulation and Experimental Results 39 4.1 System Simulation Results 39 4.1.1. Waveforms of Function Blocks 40 4.2 Experimental Results 43 Chapter 5 Conclusions and Future Works 53 5.1 Conclusions 53 5.2 Future Works 54 REFERENCES 55

    [1] K. W. Chew, Z. Sun, J. Tang, and L. Siek, “A 400nW Single-Inductor Dual-Input-Tri-Output DC-DC Buck-Boost Converter with Maximum Power Point Tracking for Indoor Photovoltaic Energy Harvesting,” IEEE International Solid-State Circuit Conference. Dig Tech Papers, pp. 68-69, Feb. 2013.
    [2] H. Shao, X. Li, C. Tsui, and W.-H. Ki, “A Novel Single-inductor Dual-Input Dual-Output DC-DC Converter With PWM Control for Solar Energy Harvesting System,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems., vol. 22, no. 8, pp.1693-1704, Aug. 2014.
    [3] H. J Chen, Y. H. Wang, P. C. Huang, and T.H Kuo, “An Energy-Recycling Three-Switch Single-Inductor Dual-Input Buck/Boost DC-DC Converter With 93% Peak Conversion Efficiency and 0.5mm2 Active Area for Light Energy Harvesting,” IEEE International Solid-State Circuit Conference. Dig Tech Papers, pp. 1-3, Feb 2015.
    [4] S. Liu, L. Zeng, and G. Wang, “A Boost Converter with a 2.5μA Voltage Detector Designed for Energy-Harvesting Duty-Cycle Wireless Sensor Node,” IEEE Advanced information Technology, Electronics and Automation Control Conference, pp. 255-259, Dec 2015.
    [5] R. J. M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders and C. V. Hoof, “Energy harvesting for autonomous wireless sensor networks,” IEEE Solid State Circuits Mag, vol. 2, no. 2, pp. 29–38, Feb. 2010.
    [6] V. Leonov, “Thermoelectric Energy Harvesting of Human Body Heat for Wearable Sensors,” IEEE Sensor Journal, vol. 13, no. 6, pp. 2284–2291, Jun. 2013.
    [7] F. Deng, H. Qiu, J. Chen, L. Wang and B. Wang, and Bo Wang, “Wearable Thermoelectric Power Generators Combined With Flexible Supercapacitor for Low-Power Human Diagnosis Devices,” IEEE Trans. on Industrial Electronics., vol. 64, no. 2, pp. 1477–1485, Feb. 2017.
    [8] Performance parameters-1MD04-127-15TEG”, 2014 RMT
    [9] R.W. Erickson, D. Msksimovic, Fundamentals of Power Electronics Second Edition, Kluwer Academic, 2001.
    [10] P. H. Chen and P. M. Y. Fan, “An 83.4% Peak Efficiency Single-Inductor Multiple-Output Based Adaptive Gate Biasing DC-DC Converter for Thermoelectric Energy Harvesting,” IEEE Trans. on Circuit and Systems., vol. 62, no. 2, pp. 405–412, Feb. 2015.
    [11] J. Kim, M. Shim, J. Jung, H. Kim and C. Kim, “A DC-DC Boost Converter with Variation Tolerant MPPT Technique and Efficient ZCS Circuit for Thermoelectric Energy Harvesting Applications,” 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 35-36, Jan 2014.
    [12] Nisha K S and Mini V P, “Battery-less Boost Converter for Thermal Energy Harvesting System,” 2015 International Conference on Control Communication & Computing India (ICCC), pp. 331-336, Nov 2015.
    [13] D. Schillinger, Y. Hu, M. Amayreh, C. Moranz and Y. Manoli, “A 96.7% Efficient Boost Converter with a Stand-by Current of 420 nA for Energy Harvesting Applications,” 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 654-657, May 2016.
    [14] J. Goeppert and Y. Manoli, “Fully Integrated Startup at 70 mV of Boost Converters for Thermoelectric Energy Harvesting,” IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1716-1726, Jul 2016.
    [15] H. Liu, F. Li and J. Ai, “A Novel High Step-Up Dual Switches Converter With Coupled Inductor and Voltage Multiplier Cell for a Renewable Energy System,” IEEE Trans. on Power Electronics., vol. 31, no. 7, pp. 4974-4982, Jul. 2016.
    [16] K. I. Hwu and Y. T. Yau, “High Step-Up Converter Based on Coupling Inductor and Bootstrap Capacitors With Active Clamping,” IEEE Trans. on Power Electronics., vol. 29, no. 6, pp. 2655-2660, Jun. 2014.
    [17] K. I. Hwu and Y. T. Yau, “High Step-Up Converter Based on Charge Pump and Boost Converter,” IEEE Trans on Power Electronics, vol. 27, no. 5, pp. 2484-2660, May. 2012.
    [18] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Proceedings - Electric Power Applications, vol. 151, no. 2, pp. 182-190, Feb. 2004.
    [19] K. C. Tseng and T. J. Liang, “Analysis of integrated boost-flyback step-up converter,” IEE Proceedings - Electric Power Applications, vol. 152, no. 2, pp. 217-225, May. 2005.
    [20] S. Kim and G. A. Rincón-Mora, “Dual-Source Single-Inductor 0.18μm CMOS Charger-Supply with Nested Hysteretic and Adaptive On-Time PWM Control,” IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 400-402, Feb. 2014.
    [21] Y. H. Wang, Y. W. Huang, P. C. Huang, H. J. Chen and T. H. Kuo, “A Single-Inductor Dual-Path Three-Switch Converter With Energy-Recycling Technique for Light Energy Harvesting,” IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2716-2728, Nov. 2016.
    [22] T. Ozaki, T. Hirose, H. Asano, N. Kuroki and M. Numa, “Fully-Integrated High-Conversion-Ratio Dual-Output Voltage Boost Converter with MPPT for Low-Voltage Energy Harvesting,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2398-2407, Oct 2016.
    [23] S. W. Lee and H. L. Do, “A Single-Switch AC–DC LED Driver Based on a Boost-Flyback PFC Converter With Lossless Snubber,” IEEE Trans. on Power Electronics., vol. 32, no. 2, pp. 1375-1384, Feb. 2017.
    [24] M. Jinno, “Efficiency Improvement for SR Forward Converters with LC Snubber,” IEEE Trans. on Power Electronics., vol. 16, no. 6, pp. 812-820, Nov. 2001.
    [25] “Application Note AN-4147 Design Guidelines for RCD Snubber of Flyback Converters,” Fairchild.
    [26] R. Watson, F. C. Lee and G. C. Hua, “Utilization of an Active-Clamp Circuit to Achieve Soft Switching in Flyback Converters,” IEEE Trans. on Power Electronics., vol. 11, no. 1, pp. 162-169, Jan. 1996.
    [27] Bor-Ren Lin, Huann-Keng Chiang, Kao-Cheng Chen and David Wang, “Analysis, design and implementation of an active clamp flyback converter,” IEEE International Conference on Power Electronics and Drives Systems, vol. 1, pp. 424-429, Nov. 2005.
    [28] S. Larousse, H. Razik, R. Cellier, N. Abouchi and P. Volay, “Active Dead-time optimization for wide range Flyback active-clamp converter,” IEEE International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-6, May. 2016.
    [29] “DC-DC Converters Feedback and Control,” ON Semiconductor.
    [30] “Practical Feedback Loop Analysis for Voltage-Mode Boost Converter,” Texas Instruments, Jan. 2014.
    [31] Hangseok Choi, Ph. D “Practical Feedback Loop Design Considerations for Switched Mode Power Supplies,” Fairchild.
    [32] M. H. Cho, W. H. Lee, J. S. Kim, Y. H. Sa, H. S. Kim and H. W. Cha, “Development of Undervoltage Lockout (UVLO) Circuit Configurated Schmitt Trigger,” IEEE International SoC Design Conference (ISOCC), pp. 59-60, Nov. 2015.
    [33] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
    [34] T. C. Carusone, D. Johns, and K. Martin, Analog Integrated Circuit Design, 2th ed. John Wiley & Sons. Inc. 2013.

    無法下載圖示 校內:2022-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE