| 研究生: |
洪國翔 Hong, Cuo-Xiang |
|---|---|
| 論文名稱: |
改進太陽能矽晶切晶製程成本之研究 The Study of improve Saw Wire Machine cost for Solar Process Using Experimental Methodology |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 良率 、晶圓切削 、漿料成本 、複線式線切割機 |
| 外文關鍵詞: | Yield, Wafer Sawing, Slurry Cost, Multi-Wire Saw Machine |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討回收SiC與PEG混合漿料來改善太陽能多晶矽切晶製程成本。研究中使用DS 271複線式游離磨粒線切割機進行晶圓切削,探討不同操作條件(不同漿料體積與切削速率)對於晶圓良率之影響。研究中使用Mastersizer 2000粉體粒徑分析儀來量測切削劑中粉體粒徑大小,同時使用SEM成相方法來檢視切割後kerf的分布情況;此外,以照相機拍攝晶圓缺陷形狀並探討原因。為節省切削成本,將使用過之漿料經SRU回收機處理後,部分作為下次切割時使用。研究結果顯示,當控制良率在容許標準範圍內,本研究方法可節省可觀的漿料成本,亦即可以降低整體切削成本。
In this paper, the cutting cost of the solar Si is improved by using slurry mixed by SiC and PEG. The DS271 free-abrasive multi-wire saw machine is used to cutting wafer, and study the influence of different operating conditions (various slurry volume and cutting speed) on the wafer yield. In the experiment, the Mastersizer 2000 particle analyzer is used to measure the particle sizes (diameters). Furthermore, the SEM photos are used to examine the kerf before an after the cutting. The results show that when the yields are controlled in a tolerent standard value, the slurry cost can be obviosly saved, and hence the total cutting cost can be reduced.
[1]經濟部工業局,2007,矽晶圓製造業資源化應用技術手冊,財團法人台灣綠色生產力基金會,2007年8月。
[2]林士傑,低溫多晶矽之製作與特性分析,國立中央大學光電科學研究所碩士論文,2003。
[3]謝尚潔、楊涵茵、林楷倫、李豐穎,2007,從物理化學觀點看綠色能源:以多晶矽太陽能電池矽基板製造技術為例,Chinese Chemical Society, Taipei, December, Vol. 65, No. 4, pp. 463-474.
[4]陳璟旻,金屬誘發多晶矽結晶之材料特性研究,國立成功大學航空太空工程學系碩士論文,2008。
[5] Z. Jin, B. A. Gururaj, M. W. Y. Yeung, H. S. Kwok. 1997. Low-Temperature Annealing of Polycrystalline Si1-xGex After Dopant Implantation, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 44, NO. 11, NOVEMBER.
[6] P. S. Plekhanov, R. Gafiteanu, U. M. Gosele and T. Y. Tan. 1999. Modeling of Gettering of Precipitated Impurities from Si for Carrier Lifetime Improvement in Solar Cell Applications, Journal of Applied Physics Volume 86, Number 5, September.
[7]T. Kaplan, F. Liu, M. Mostoller, M. F. Chisholm, and V. Milman, First-Principles Study of Impurity Segregation in Edge Dislocations in Si, Physical Review B Volume 61, Number 3, January, 2000.
[8]J. W. Jeong, A. Rohatgi, M. D. Rosenblum, and J. P. Kalejs, Lifetime Enhancement in Efg Multicrystalline Silicon, IEEE, 2000.
[9]P. Hidalgo, O. Palais1 and S. Martinuzzi. Behaviour of Metallic Impurities at Grain Boundaries and Dislocation Clusters in Multicrystalline Silicon Wafers Deduced from Contactless Lifetime Scan Maps, J. Phys.: Condens. Matter 16 (2004) S19–S24.
[10]R.C., Teixeira, I. Doi, M.B.P. Zakia, J.A. Diniz, J.W. Swart, Micro-Raman Stress Characterization of Polycrystalline Silicon Films Grown at High Temperature, Materials Science and Engineering B 112 160–164, 2004.
[11]D. Clinton, V. Sicle, Intergranular Fracture in Model Polycrystals with Correlated Distribution of Low-Angle Grain Boundaries, 2006.
[12] T. Watanabe, K. Kido, S. Tsurekawa, K. Kawahara. A New Approach to Grain Boundary Engineering for Photovoltaic Polysilicon by Unidirectional and Rotational Solidification, Materials Science Forum Vols. 558-559 (2007) pp 843-850.
[13]J. Libal, S. Novaglia, M. Acciarri, S. Binetti, R. Petres, J. Arumughan, R. Kopecek, and A. Prokopenko, Effect of Compensation and of Metallic Impurities on the Electrical Properties of Cz-Grown Solar Grade Silicon, Journal of Applied Physics 104, 104507, 2008.
[14]S. Hudelson, Y. S. Lee, K. Hartman, B. Lai, Z. Cai, M. A. Marcus, and T. Buonassisi, Evolution of Metal Impurities during Crystalline Silicon Solar Cell Processing, IEEE, 2008
[15]A. S. Focsa, S. Schmitt, F. de Moro, E. Jolivet, C. Belouet, E. V. Kerschaver, J. Robbelein, Gettering Effects and Fg Annealing on Thin Rst Ribbon Silicon Solar Cells, 24th European Photovoltaic Solar Energy Conference, 21-25 September, Hamburg, Germany, 2009.
[16]M. Bhagavat, V. Prasad, I. Kao., Elasto-Hydrodynamic Interaction in the Free Abrasive Wafer Slicing Using a Wiresaw Modeling and Finite Element Analysis, 394-404, Vol. 122, APRIL, Transactions of the ASME, 2000.
[17]王琮,半導體材料加工設備的新秀-多線切割機,電子工業專用設備,中國電子科技集團公司第四十五研究所,北京東燕郊101601,2002年。
[18]靳永吉,線鋸切割失效機理的研究,中國電子科技集團公司第四十五,北京東燕郊101601,2002年。
[19]沈岳文,游離再生磨粒線切割加工對矽晶圓品質特性之影響,雲林科技大學機械工程系碩士班碩士論文,2004年。
[20]常美茹,線切割機加工半導體晶片品質控制的研究,Semiconductor Technology, pp. 176-179, Vol. 31, No. 3, 2006.
[21]錢宏峰、林財興、趙懿峰,多絲切割機加工過程與鋼絲振動,機電工程技術第35卷第6期,2006年。
[22]李保軍、馮濤,矽單晶錠多線切割中沙漿作用的研究,工藝技術與材料,2007。
[23]S. Bhagavat, I. Kao, A Finite Element Analysis of Temperature Variation in Silicon Wafers during Wiresaw Slicing, International Journal of Machine Tools & Manufacture 48, 95-106, 2008.
[24]A. Bidiville, K. W., J. Michler, C. Ballif, M. V. d. Meer and P. M. Nasch., Influence of Abrasive Concentration on the Quality of Wire-Sawn Silicon Wafers, 23rd European Photovoltaic Solar Energy Conference, 1-5 September, Valencia, Spain, 2008.
[25]L. Québatte, A.M. Popa, A.K. Bakshi, Y. Boussant-Roux, P.M. Nasch, Influence of shape and size of silicon carbide grits on wire saw cutting efficiency, 23rd European Photovoltaic Solar Energy Conference, 1-5 September, Valencia, Spain, 2008.
[26]R. Rietzschel, T. Wagner, C. Funke, and H. Joachim. 2008. Möller Optimization of the wire sawing process using force- and temperature- measurements, 23rd European Photovoltaic Solar Energy Conference, 1-5 September, Valencia, Spain.
[27]T. Palathra, and R. Adomaitis, Process Modeling of a Wire Saw Operation, ISR TechnIcal Report, 2008.
[28]郭炳麟,漿料特性分析於矽晶片線鋸切割影響研究,台灣科技大學機械系碩士論文,六月,2009年。
[29]陳炤彰、鄭守智、林鼎將、鄭世隆、李奇澤及徐文慶,”矽基板線鋸加工之鋼線機械性質分析”,台灣磨粒加工學會一百年度研討會論文集,2011年。
[30]Applied Materials External Use, Advanced Wire Sawing Technology for Photovoltaic Cells, , Applied Materials, Inc. 2011.
[31]B.Weber, and S. Riepe., Challenges of the Multi Wire Sawing Process for Thin Wafers, 27th European PV Solar Energy Conference and Exhibition, 24-28, September, 2012.
[32]B. Weber, C. Bierwisch, R. Kubler, and G. Kleer., Investigation on the Sawing of Solar Silicon by Application of Wires of 100μm Diameter, 23rd European Photovoltaic Solar Energy Conference, 1-5 September, Valencia, Spain, 2008.
[33]C. C. A. Chen, B.L. Kuo and J.S. Liang. 2009. Chip Size Estimation for Effective Blending Ratio of Slurries in Wire Sawing of Silicon Wafers for Solar Cells, Advanced Materials Research Vols. 76-78, pp 422-427.
[34]S. Nishijima, Y. Izumi, S.I. Takeda, H. Suemoto, A. Nakahira, and S.I. Horie, Recycling of Abrasives from Wasted Slurry by Superconducting Magnetic Separation, IEEE Transactions on Applied Superconductivity, Vol. 13, No. 2, June, 2003.
[35]郭興忠、楊輝、王建武、曹明,聚乙二醇表面改性SiC粉體的物性表徵,材料工程3期,2004年。
[36]H. Heegn, and M. Rutz, Dispersion and Sedimentation of Si-SiC-Mixtures, Partec, 2007.
[37]T.Y. Wang, Y.C. Lin, C.Y. Tai, R. Sivakumar, D.K. Rai, C.W. Lan, A Novel Approach for Recycling of Kerf Loss Silicon from Cutting Slurry Waste for Solar Cell Applications, Journal of Crystal Growth 310, 3403–3406, 2008.
[38]陳宇君, “碳化矽粒子於乙二醇中之行為研究探討”, 中央大學材料科學與與工程研究所碩士論文, 2009年。
[39]L. Zhang, Development of Solar Grade Silicon (SoG-Si) Feedstock by Recycling SoG-Si Wastes, Final Report, DOE award ED-EE0000575, DE-PS36-09GO99003 (CFDA number: 81.087): Photovoltaic Supply Chain and Cross-Cutting Technologies., Topic 1: Proof of Concept/Feasibility Assessment, Focus area 3: PV manufacturing processes and metrologies: Materials recycling, 2010.
[40]宋國榮, “太陽電池產業晶柱切割製程廢切削液回收研究”, 中央大學環境工程研究所碩士論文,2011年。
[41]Meyer Burger, Wire Saw DS 264 Operating Manual.
[42]http://wenku.baidu.com/view/ea71e0ebb8f67c1cfad6b89b.html
[43]http://www.fullman.com/semiconductors/_crystalgrowing.html
校內:2024-12-31公開