簡易檢索 / 詳目顯示

研究生: 林坤緯
Lin, Kun-Wei
論文名稱: 砷化鎵系列肖特基接觸式氫氣感測元件之研究
Investigation of Hydrogen-Sensing GaAs-Based Schottky Contact Devices
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 172
中文關鍵詞: 肖特基位障氫氣感測器
外文關鍵詞: hydrogen sensor, Schottky barrier
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的發達,氫氣的應用越來越廣泛,因為氫氣具有爆炸性,因此監控氫氣已是現今一重要課題。與傳統氫氣感測器比較起來,本文所提之氫氣感測元件具有輕、薄、短、小等優點。
    在本論文中,我們研製一系列砷化鎵肖特基接觸式氫氣感測器元件。主要重點在於研製具有高靈敏度以及寬廣氫氣感測範圍,其中包括了以砷化鎵為基底成長三種不同的主動層,接著以不同的觸媒金屬分別做成電晶體式以及肖特基二極體式氫氣感測器,分析在不同的氫氣濃度、不同的操作溫度下,感測元件的反應特性。
    首先,我們製作了以鈀為觸媒金屬的砷化鎵金屬-絕緣層-半導體場效電晶體式氫氣感測器,本元件具有大的氫氣感測電流變化量、可在室溫下操作以及對氫氣反應速度快等優點。此外,由實驗得知,電晶體的轉導值會隨著氫氣濃度的增加而逐漸變小。
    接著,我們製作了以白金為觸媒金屬的磷化銦鎵肖特基二極體式氫氣感測器,因為磷化銦鎵具有大的能隙,因此該元件可以操作在相當寬廣的溫度範圍。另外,我們分別在砷化鎵基板成長不同摻雜濃度的磷化銦鎵氫氣感測器,並測量分析其氫氣感應特性。
    為了研究費米能階釘住效應對氫氣感測的影響,首先我們製作以鈀為觸媒金屬的磷化銦鎵金-半接面肖特基式二極體,並對其氫氣反應特性作量測與分析,並與具備氧化層之磷化銦鎵金-氧-半接面場效電晶體做比較。由實驗的結果與理論分析,我們得知具有界面氧化層結構的感測器無論在靈敏度、電流變化量以及與氫氣反應的時間都明顯比沒有氧化層之感測器優良。
    在不同的觸媒金屬(如:鈀金屬和白金)的比較上,由實驗可以得知,以鈀為觸媒金屬的磷化銦鎵金-氧-半肖特基二極體式氫氣感測器在較低的氫氣濃度以及較低的操作溫度有較大的感測靈敏度以及電流變化量;相反的,以白金為觸媒金屬的氫氣感測器在較高溫及較高的氫氣濃度會有較佳的表現。
    另外,我們亦製作了以鈀為觸媒金屬的砷化鋁鎵肖特基二極體式氫氣感測器,由於砷化鋁鎵具有大的能隙以及比磷化銦鎵材料較易成長氧化層等特性,因此元件的靈敏度、電流變化量等氫氣感應特性皆明顯獲得改善。

    With the vast advance in scientific technology, the applications of hydrogen gas have spread over many fields. Since the hydrogen is a flammable and explosive gas, the monitor and detect the leakage of hydrogen gas is an importance issue. As compared with conventional hydrogen sensors, the advantages of our studied devices are small size and ease of fabrication.
    In this dissertation, we present a series of hydrogen-sensing GaAs-based Schottky contact devices. The main concerns demonstrate high hydrogen detecting sensitivity and widespread operating temperature. Three different active layers, used as Schottky contact layers are grown on GaAs substrates. The different catalytic metals, e.g., Pd and Pt, are used as the gate material. These studied devices are investigated under different hydrogen concentrations and different operation temperature based on the transistor and Schottky diode type, respectively.
    First, a novel Pd/oxide/GaAs metal-insulator-semiconductor field-effect transistor (MISFET) hydrogen sensor is fabricated and demonstrated. The studied device exhibits some remarkable advantages, including large current variation and short hydrogen response time under exposing in hydrogen condition at room temperature. In addition, it is know that, from the experimental results, the transconductance is reduced with increasing the hydrogen concentration.
    Second, a new Pt/oxide/In0.49Ga0.51P Schottky diode hydrogen sensor is fabricated and demonstrated. Due to the relatively large energy bandgap of InGaP, the studied devices can be operated under widespread temperature regime. In addition, the hydrogen-sensing characteristics of the Pt/oxide/In0.49Ga0.51P Schottky diode hydrogen sensors with different doping concentration of active layer are measured and studied.
    In order to study the influence of Fermi-level pinning effect and hydrogen sensing, the Pd/InGaP MOS and MS Schottky diodes hydrogen sensors are fabricated and systemically studied. From experimental results, it is known that the MOS type hydrogen sensor exhibits high hydrogen detecting sensitivity, larger current variation, and short hydrogen response time than that of MS type hydrogen sensor.
    By comparing different catalytic metals (e.g., Pd and Pt), the Pd-InGaP Schottky diode exhibits larger current variation and barrier height change under low hydrogen concentration ambient. On the contrary, the Pt-InGaP Schottky diode shows better high-temperature performances and larger hydrogen detection regimes.
    Finally, the catalytic Pd MOS Schottky diode hydrogen sensor based on an AlGaAs active layer is fabricated and investigated. Due to the larger energy bandgap and ease of forming the oxide layer, the hydrogen-sensing characteristics such as hydrogen detecting sensitivity and current variation are remarkly improved.

    Contents Abstract (Chinese) Abstract (English) Figure Captions Chapter 1. Introduction (1) Chapter 2. Pd/Oxide/GaAs Metal-Insulator-Semiconductor Field-Effect Transistor (MISFET) Hydrogen Sensor 2-1. Introduction (7) 2-2. Device Fabrication (8) 2-3 Experimental Results and Discussion (9) 2-4 Summary (14) Chapter 3. Pt/Oxide/In0.49Ga0.51P Schottky Diode Hydrogen Sensors 3-1. Introduction (16) 3-2. Device Fabrication (18) 3-3. Pt/Oxide/In0.49Ga0.51P Schottky Diode Hydrogen Sensor with a Lower Doping Concentration (n=1´1017cm-3) Active Layer (19) 3-3-1. Experimental Results and Discussion (19) 3-3-2. Summary (26) 3-4. Pt/In0.49Ga0.51P Schottky Diode Hydrogen with a Higher Doping Concentration (n=2´1017cm-3) Active Layer (26) 3-4-1. Experimental Results and Discussion (26) 3-4-2. Summary (29) 3-5. Summary (29) Chapter 4. Comparative Studies of Hydrogen Sensing performance of Pd/InGaP MOS and MS Schottky Diodes 4-1. Introduction (31) 4-2. Device Fabrication (33) 4-3 Experimental Results and Discussion (34) 4-4 Summary (42) Chapter 5 Comparative studies of Hydrogen Sensing performance of Pd- and Pt- InGaP MOS Schottky Diodes 5-1. Introduction (43) 5-2 Device Fabrication (44) 5-3 Experimental Results and Discussion (45) 5-4 Summary (52) Chapter 6. Pd/Al0.3Ga0.7As MOS and MS Schottky Diode Hydrogen Sensors 6-1. Introduction (53) 6-2. Device Fabrication (54) 6-3. Experimental Results and Discussion (56) 6-4. Summary (61) Chapter 7. Conclusions and Prospects 7-1. Conclusions (63) 7-2. Prospects (64) References (65) Figures Publication List

    References
    [1] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.

    [2] W.J. Buttner, G.J. Maclay, and J.R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans.Electron Devices, vol. 35,pp. 793 –799, 1988.

    [3] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.

    [4] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp. 825-835, 1992.

    [5] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol.2, pp. 431 –440L, 1997.

    [6] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A.L. Spetz, and P. Tobias,”Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., Vol, 18, pp. 287 –289, 1997.

    [7] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sensor and Actuators B, vol. 85, pp. 10-18, 2002.

    [8] M. Duffy, W.G. Hurley, J. Kubik, S. O’Reilly,and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE , vol.18, pp. 779 –784 2002.

    [9] N. Yamazoe and N. Miuta, “Development of gas sensors for environmental protection,” IEEE Tran.Components, Package, and Manufacturing, vol. 35,pp. 793 –799, 1995.

    [10] C. C. Chang, Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 44, pp. 624-628, 1997.

    [11] P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997.

    [12] S. Seki, O. Kogure, and B. Tsujiyamma, “ A semi-empirical model for the field-effect mobility of hydrogenated polycrystalline silicon MOSFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 669-674, 1988.

    [13] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R. Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,” IEEE Electron Device Lett., vol. 11, pp. 194-196, 1990.

    [14] R. E. Stahlbush, “Interface defect formation in MOSFETs by atomic hydrogen exposure,” IEEE Trans. Nuclear Science, vol. 41, pp. 1844-1853, 1994.

    [15] T. Wang, C. Huang, P. C. Chou, S. S. S. Chung, and T. E. Chang, “Effect of hot carrier induced interface state generation in submicron LDD MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, pp. 1618-1622, 1994.

    [16] M. Cao, T. Zhao, K. C. Saraswat, J. D. Plummer, “Study on hydrogenation of polysilicon thin film transistors by ion implatation,” IEEE Trans. Electron Devices, vol. 42, pp. 1134-1140, 1995.

    [17] I. C. Kizilyalli, J. W. Lyding, and K. Hess, “ Deuterium post-metal annealing of MOSFET’s for improved hot carrier reliability,” IEEE Electron Device Lett., vol. 18, pp. 81-83, 1997.

    [18] H. Seo, T. Endoh, H. Fukuda and S. Nomura, “High sensitive MOSFET gas sensors with porous platinum gate electrode,” IEE Electron Lett., vol. 33, pp. 535-536, 1997.

    [19] T., L. Poteat and B. Lalevic, Pd-MOS hydrogen and hydrocarbon sensor device, IEEE Electron Device Lett., vol.2, pp.32-34, 1981.

    [20] D. Briand, H. Sundrgen, B. van der Schoot, I. Lundström, and N. F. de. Rooij, Thermally isolated MOSFET for gas sensing application, IEEE Electron Device Lett., vol.22, pp.11-13, 2001.

    [21] R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studied of Pd metal/insulator/semiconductor diode H2 sensors”, J. Appl. Phys., vol.62, pp.1084-1092, 1987.

    [22] K. K. Ng, Complete guide to semiconductor devices, 2002, New York

    [23] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field effect transistor,” Appl. Phys. Lett., vol.26, pp.55-57, 1975.

    [24] P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS Schottky barrier diode hydrogen detector,” IEEE Trans. Electron Devices, vol. 28, pp. 1003-1009, 1981.

    [25] S. Basu and A. Dutta, “Room-temperature hydrogen sensors based on ZnO,” Mat. Chem. Phys., vol. 47, pp. 93-96, 1997.

    [26] L. Yadava, R. Dwivedi, and S. K. Srivastava, “A titanium dioxide-based MOS hydrogen sensor,” Solid-St. Electron., vol. 33, pp. 1229-1234, 1990.

    [27] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “The ammonia sensitivity of Pt/GaAs Schottky barrier diode,” J. Appl. Phys. Vol. 70, pp. 3348-3354, 1991.

    [28] D. Briand, H. Sundgren, B. Schoot, I. LundstrÖm and N. F. Rooij, “ Thermally Isolated MOSFET for Gas Sensing Application, “ IEEE Electron Device Lett. vol. 22, pp. 11-13, 2001.

    [29] M. Eriksson and L. G. Ekedahl, “ Hydrogen adsorption states at the Pd/SiO2 interface and simulation of the response of a Pd metal-oxide-semiconductor hydrogen sensor,” J. Appl. Phys. vol. 38, pp. 3947-3951, 1998.

    [30] H. Takahashi, K. Asano, K. Mastsunaga, N. Iwata, A. Mochizuki, and H. Hirayama, “Step-recessed gate structure with an undoped surface layer for microwave and millimeter-wave high power, high efficiency GaAs MESFET ‘s,” IEICE Trans., vol. 74, pp. 4141-4146, 1991.

    [31] H. Fukuda, H. Seo, K. Kasarma, T. Endoh and S. Nomura, “ Highly sensitivity MOSFET gas sensor with porous platinum gate electrode,” Jpn. J. Appl. Phys. Part 1, vol. 37, pp.1100-1102, 1998.

    [32] H. Y. Nie and Y. Mammichi, “ Pd-on-GaAs Schottky contact : its barrier height and response to hydrogen,” Jpn. J. Appl. Phys., vol.30, pp.906-913, 1991.

    [33] N. Newman, W. E. Spicer, T. Kendelewicz, and I. Lindau, “ On the Fermi level pinning behavior of metal/III-V semiconductor interfaces,” J. Vac. Sci. Technol. B, vol.4, pp. 931-938, 1986.

    [34] K. A. Bertness, T. Kendelewicz, R. S. List, M. D. Williams, I. Lindau, and W. E. Spicer, “Fermi level pinning during oxidation of atomically clean n-InP (110),” J. Vac. Sci. Technol. A, vol. 4, pp.1424-1426, 1986.

    [35] C. Tedesco, E. Zanoni, C. Canali, S. Bigliardi, M. Manfredi, D. C. Streit, and W. T. Anderson, ” Impact ionization and light emission in high power pseudomorphic AlGaAs/InGaAs HEMT’s,” IEEE Trans. Electron Devices, vol. 40,pp.1211-1214, 1993.

    [36] Y. K. Fang, S. B. Hwang, C. Y. Lin and C. C. Lee, “ Trench Pd/Si metal-oxide semiconductor Schottky barrier diode for a high sensitivity hydrogen gas sensor, “ Appl, Phys. Lett., vol.57, pp.2686-2688, 1990.

    [37] Y. Gurbuz, W. p. Kang, J. L. Davison and D. V. Kerns, “ Analyzing the mechanism of hydrogen adsorption effects on diamond based MISFET hydrogen sensors,” Sens. Actuators B, vol. 35-36, pp.68-72, 1996.

    [38] Y. Gobert and G. Salmer, “ Comparative behavior and performances of MESFET and HEMT as a function on temperature,” IEEE Trans. Electron Devices, vol.41, pp.299-305,1994.

    [39] S. M. Sze, physics of Semiconductance Devices, 2nd Edn, Charp. 5.Wiley, New York (1981).

    [40] A.S. Royet, T. Ouisse, B. Cabon, O. Noblanc, C. Arnodo, C. Brylinski, ” Self-heating effects in silicon carbide MESFETs,” IEEE Trans. Electron Devices, vol. 47, pp. 2221 –2227, 2000

    [41] S. M. Sze, physics of Semiconductance Devices, 2nd Edn, Charp. 2.Wiley, New York (1981)

    [42] M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-State Electron., vol. 25, pp. 753-758, 1982.

    [43] L. M. Lechuga, A. Calle, D.Golmayo and F. Briones, “Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, pp. 614-618, 1992.

    [44] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994.

    [45] A. Arbab, A. Spetz and I. Lunström, “Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices,” Sens. Actuators B, vol.15-16, pp.19-23, 1993.

    [46] C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang, “Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high temperature,” J. Electron. Mat.,vol.28, pp.202-205, 1999.

    [47] G.W. Hunter, P. G. Neudeck, L. Y. Chen, D. Knight, C. C. Liu, Q.H. Wu, “Microfabricated chemical sensors for safety and emission control applications,” The AIAA/IEEE/SAE, Digital Avionics Systems Conference, 1998.
    Proceedings, 17th DASC. vol. 1, pp. D11/1 -D11/8, 1998.

    [48] B. P. Luther, S. D. Wolter, and S. E. Mohney., “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sens. Actuators B , vol.56, pp.164-168, 1999.

    [49] J. Y. Chen, S. Y. Cheng, W. L. Chang, and W. C. Liu, “d-doping InGaP/GaAs heterojunction bipolar transistor,” Mat. Chem. Phys., vol. 53, no. 1, pp. 88-91, 1998.

    [50] W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie and W. C. Liu, “Investigation of InGaP/GaAs double delta-doped heterojunction bipolar transistor (D3HBT),” Semicond. Sci. Technol., vol. 13, no. 6, pp. 630-633, 1998.

    [51] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 304-306, 1999.

    [52] W. C. Wang, J. Y. Chen, H. J. Pan, S. C. Feng, K. H. Yu, and W. C. Liu, “Study of InGaP/GaAs/InGaP double d-doped heterojunction bipolar transistor,” Superlattices & Microstructures, vol. 26, no. 1, pp. 23-33, 1999.

    [53] W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., vol. 20, no. 11, pp. 548-550, 1999.

    [54] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys., vol. 38, no. 12A, pp. L1385-1387, 1999.

    [55] J. Y. Chen, W. C. Wang, H. J. Pan, S. C. Feng, and K. H. Yu, S. Y. Cheng, W. C. Liu, “Characteristics of InGaP/GaAs delta-doped heterojunction bipolar transistor,” J. Vac. Sci. & Technol., vol. B18, no. 2, pp. 751-756, 2000.

    [56] K. H. Yu, K. W. Lin, C. C. Cheng, K. P. Lin, C. H. Yen, C. Z. Wu, and W. C. Liu, “InGaP/GaAs Camel-Like Field-Effect Transistor for High-Breakdown and High-Temperature Applications,” IEE Electron. Lett., vol. 36, no. 22, pp. 1886-1888, 2000.

    [57] K. H. Yu, K. W. Lin, C. C. Cheng, W. L. Chang, J. H. Tsai, S. Y. Cheng and W. C. Liu, “Temperature Dependence of Gate Current and Breakdown Behaviors in an n+-GaAs/p+-InGaP/n--GaAs High-Barrier Gate Field-Effect Transistor,” Jpn. J. Appl. Phys., vol. 40, no. 1, pp. 24-27, 2001.

    [58] H. J. Pan, S. C. Feng, W. C. Wang, K. W. Lin, K. H. Yu, C. Z. Wu, L. W. Laih, and W. C. Liu, “Investigation of an InGaP/GaAs Resonant-Tunneling Heterojunction Bipolar Transistor,” Solid-State Electron., vol. 45, no. 3, pp. 489-494, 2001.

    [59] T. Hashizume and T. Saitoh, “Natural oxide on air exposed and chemically-treated InGaP surface growth by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. vol. 78, pp.2318-2320, 2001.

    [60] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative Hydrogen-Sensing Study of Pd/GaAs and Pd/InP Metal-Oxide-Semiconductor Schottky Diodes,” Jpn. J. Appl. Phys., vol.40, pp.6254-6259, 2001.

    [61] K. A. Bertness, T. Kendelewicz, R. S. List, M. D. Williams, I. Lindau, and W. E. Spicer, “Fermi level pinning during oxidation of atomically clean n-InP (110),” J. Vac. Sci. Technol. vol.A 4, pp.1424-1426, 1986.

    [62] T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition metal electrodes,” J. Electron. Mat. Vol.12, pp.181-214, 1983.

    [63] W.P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys. vol. 75, pp.8175-8181, 1994.

    [64] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators, vol.1, pp.403-426, 1981.

    [65] M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing enviroments,” J. Appl. Phys., vol. 84, pp. 44-51, 1998.

    [66] B. B. Kuliev, B. Lalevic, M. Yousuf, and D.M. Safarov, “New hydrogen-sensitive metal-InP diode,” Sov. Phys. Semicond., vol. 17, pp.875-876, 1983.

    [67] L. M. Lechuga, A. Calle, D.Golmayo, P. Tejedor, and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuators B, vol. 4, pp. 515-518, 1991.

    [68] K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/oxide/GaAs metal–insulator–semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol, vol. 16, pp. 997-1001, 2001.

    [69] S. T. Yen and C.P. Lee, “Effects of doping in the active region of 630-nm band GaInP-AlGaInP tensile-strained quantum-well lasers,” IEEE Quantum Electronics, vol. 34, pp. 1644 –1651, 1998

    [70] W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., vol. 20, no. 11, pp. 548-550, 1999.

    [71] W. C. Liu, K. H. Yu, K. W. Lin, J. H. Tsai, C. Z. Wu, K. P. Lin, and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage and high-temperature operations,” IEEE Trans. Electron Devices, vol. 48, pp. 1522-1530, 2001.

    [72] E. Lan, E. Johnson, B. Knappenberger, and M. Miller, “InGaP PHEMTs for 3.5GHz W-CDMA applications,” IEEE Microwave Symposium Digest, vol. 2, pp. 1039-1042, 2002.

    [73] W. C. Liu, J. H. Tasi, W. S. Lour, L. W. Laih, K. B. Thei, and C. Z. Wu, “Multiple negative-differential-resistance (NDR) of InGaP/GaAs heterostructure-emitter bipolar trasistor (HEBT),” IEEE Electron Device Lett., vol. 17, no. 3, pp. 130-132, 1996.

    [74] D. F. Guo, C. C. Chang, K. W. Lin, W. C. Liu, and W. Lin, “A multiple-differential-resistance switch with double InGaP barriers,” Appl. Phys. Lett., vol. 69, no. 30, pp. 4185-4187, 1996.

    [75] W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, K. B. Thei and C. Z. Wu, “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switching for multiple-valued logic application,” IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 520-525, 1997.

    [76] W. C. Liu, S. Y. Cheng, J. H. Tsai, P. H. Lin, J. Y. Chen, and W. C. Wang, “InGaP/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT),” IEEE Electron Devcie Lett., vol. 18, no. 11, pp. 515-517, 1997.

    [77] S. Y. Cheng, H. J. Pan, Y. H. Shie, J. Y. Chen, W. L. Chang, W. C. Wang, P. H. Lin, and W. C. Liu, “Influence of d-doping sheet and setback layer on the performance of InGaP/GaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 13, no. 10, pp. 1187-1192, 1998.

    [78] S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie, and W. C. Liu, “Design consideration of emitter-base junction structure for InGaP/GaAs heterojunction bipolar transistors,” Solid-State Electron., vol. 43, no. 2, pp. 297-304, 1999.

    [79] S. Y. Cheng, J. H. Tsai, W. L. Chang, H. J. Pan, Y. H. Shie, and W. C. Liu, “Investigation of an InGaP/GaAs resonant-tunneling transistor (RTT),” Solid-State Electron., vol. 43, no. 4, pp. 755-760, 1999.

    [80] S. Y. Cheng, W. C. Wang, W. L. Chang, J. Y. Chen, H. J. Pan, and W. C. Liu, “A new InGaP/GaAs double delta-doped heterojunction bipolar transistor (D3HBT),” Thin Solid Films, vol. 345, no. 2, pp. 270-272, 1999.

    [81] K. H. Yu, W. L. Chang, S. C. Feng, and W. C. Liu, “Characteristics of GaAs/InGaP/GaAs Doped Channel Camel-Gate Field-Effect Transistor,” Solid-State Electron., vol. 44, no. 22, pp. 2069-2075, 2000.

    [82] W. C. Liu, H. J. Pan, W. C. Wang, S. C. Feng, K. W. Lin, K. H. Yu, and L. W. Laih, “On the Multiple Negative-Differential-Resistance (MNDR) InGaP/GaAs Resonant-Tunneling Bipolar Transistors,” IEEE Trans. Electron Devices, vol. 48, pp. 1054-1059, 2001.

    [83] W. C. Liu, K. H. Yu, K. W. Lin, J. H. Tsai, C. Z. Wu, K. P. Lin, and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage and high-temperature operations,” IEEE Trans. Electron Devices, vol. 48, pp. 1522-1530, 2001.

    [84] K. W. Lin, K. H. Yu, W. L. Chang, C. K. Wang, W. H. Chiou, and W. C. Liu, “On the InGaP/InxGa1-xAs pseudomorphic high-electron-mobility transistors for high-temperature operations,” Microelectronics and Reliability, vol. 41, pp. 1897-1902, 2001.

    [85] K. H. Yu, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen, C. Z Wu, and W. C. Liu, “Off-State Breakdown Characteristics of InGaP-Based High-Barrier Gate Heterostructure Field-Effect Transistors,” Superlattices & Microstructures, vol. 30, pp. 231-239, 2001.

    [86] K. H. Yu, K. W. Lin, K. P. Lin, C. H. Yen, C. K. Wang, and W. C. Liu, “Study of InGaP/GaAs/InGaAs high-barrier gate and heterostructure-channel field-effect transistors,” J. Vac. Sci. & Technol., vol. 20, no. 3, pp. 1096-1101, 2002.

    [87] K. H. Yu, H. M. Chuang, K. W. Lin, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved Temperature-Dependent Performances of a Novel InGaP/InGaAs/GaAs Double Channel Pseudomorphic High Electron Mobility Transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.

    [88] B. B. Kuliev, B. Lalevic, M. Yousuf, and D. M. Safarov, “New hydrogen-sensitive metal-InP diode,” Sov. Phys. Semicond., vol. 17, pp. 875-876, 1983.

    [89] H. Y. Nie and Y. Nannichi, “Pd-on-GaAs Schottky contact: its barrier height and response to hydrogen,” Jpn. J. Appl. Phys., vol. 30, pp. 906-913, 1991.

    [90] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative Hydrogen-Sensing Study of Pd/GaAs and Pd/InP Metal-Oxide-Semiconductor Schottky Diodes,” Jpn. J. Appl. Phys., vol40, pp.6254-6259, 2001.

    [91] N. Newman, W. E. Spicer, T. Kendelewicz, and I. Lindua, “On the Fermi level pinning behavior of metal/ III-V semiconductor interfaces,” J. Vac. Sci. Technol., Vol.B 4, 931-938, 1986.

    [92] T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition metal electrodes,” J. Electron. Mat., vol.12 pp.181-214, 1983.

    [93] N. Yamazoe and N. Miura, “Development of gas sensors for environmental protection,” IEEE Trans. Components, Packing and Manufacturing Technology-Park A, vol.18, pp.252-256, 1995.

    [94] G. W. Hunter, P.G. Neudeck, M. Gray, D. Androjna, L. Y. Chen, R. W. Hoffman, C. C. Liu, and Q. H. Wu, “Silicon carbide and related materials,” Mat. Sci. Forum, pp. 1439-1442, 2000.

    [95] I. Lundström and L. G. Petersson, “ Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, vol.14 pp.1539-1545, 1996.

    [96] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.

    [97] M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing enviroments,” J. Appl. Phys., vol. 84, pp. 44-51, 1998.

    [98] R. J. Silbey and R. A. Alberty, Physical chemistry – 3rd ed., John Willey & Sons, Inc., New York, 2001.

    [99] M. Eriksson, I. Lundström, and L. G. Ekedahl, “A model of the Temkin isotherm behavior for hydrogen adsorption at Pd-SiO2 interfaces,” J. Appl. Phys., vol. 82, pp. 3143-3146, 1997.

    [100] H. Sundgren, I. Lundström, F. Winquist, I. Lukkari, R. Carlesson, and S. Wold, Sensors and Actuators B, vol. B. 2, pp.115-123, 1990.

    [101] J. F. Wager and C. W. Wilmsen, J. Appl. Phys., vol. 51, pp. 812-814, 1980.

    [102] M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-State Electron., vol. 25, pp. 753-758, 1982.

    [103] A. Baranzahi, A. L. Spetz , B. Andersson, and I. Lundström, ”Gas sensitive field effect devices for high temperature” Sens. Actuators B, vol. 26, pp. 165-169, 1995.

    [104] R. H. Williams, V. Montgomery, and R. R. Varrma, J. Phys. C, vol. 11, L735, 1978.

    [105] J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, 1995.

    [106] T. Akin, B. Ziaie, S. A. Nikles, and K. Najafi,” A modular micromachined high-density connector system for biomedical applications” IEEE Trans. Biomedical Engineering, vol.46, pp.471 –480, 1999.

    [107] A. Dittmar and K. Najafi, “Special topic section on microtechniques, microsensors, microactuators, and Microsystems,” IEEE Trans. Biomedical Engineering, vol. 47, pp. 1 –2, 2000.

    [108] A. Lepore, M. Levy, H. Lee, E. Kohn, D. Radulescu, R. Tiberio, P. Tasker, and L. Eastman, “Fabrication and performance of 0.1-μm gate-length AlGaAs/GaAs HEMTs with unity current gain cutoff frequency in excess of 110 GHz,” IEEE Trans. Electron Devices, vol. 35, pp. 2441-2442, 1988.

    [109] F. S. Shoucair and P. K. Ojala, “High-temperature electrical characteristics of GaAs MESFET’s,” IEEE Trans. Electron Devices, vol. 39, pp. 1551-1557, 1992.

    [110] C. D. Wilson and A. G. O’neill, “High temperature operation of GaAs based FETs,” Solid-State Electronics, vol. 38, pp.339-343, 1995.

    [111] T. Ytterdal, B. J. Moon, T. A. Fjeldly, and M. S. Shur, “Enhanced GaAs MESFET CAD model for a wide range of temperature,” IEEE Trans. Electron Devices, vol. 42, pp. 1724-1734, 1995.

    [112] C. D. Wilson, A. G. O’neill, S. M. Baier, and J. C. Nohava, “High temperature performance and operation of HFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 201-206, 1996.

    [113] C. Ito, T. Jenkins, G. Trombley, R. Lee, R. Reston, C. Havasy, B. Johnson, and C. Eppers, “High-temperature microwave characteristics of GaAs MESFET device with AlAs buffer layers,” IEEE Electron Device Lett., vol. 17, pp. 16-18, 1996.

    [114] J. S. Su, W. C. Hsu, D. T. Lin, W. Lin, H. P. Shiao, Y. S. Lin, J. Z. H, and P. J. Chou, “High-breakdown voltage Al0.66In0.34As0.85Sb0.15/In0.75Ga0.25As/InP heterostructure field-effect transistors,” Electron. Lett., vol. 32, pp. 2095-2097, 1996.

    [115] J. N. Burghartz, J. O. Plouchart, K. A. Jenkins, C. S. Webster, M. Soyuer, “SiGe power HBT's for low-voltage, high-performance RF applications, “IEEE Electron Device Lett., vol. 19, pp. 103-105, 1998.

    [116] S. S. Islam and A. F. M. Anwar, “Temperature-dependent nonlinearities in GaN/AlGaN HEMTs” IEEE Trans. Electron Devices, Vol. 49, pp. 710 -717, 2002.

    [117] W. Liu, Handbook of III-V heterojunction bipolar transistors, Wiley, New York, 1998.

    [118] A. Voskoboynikov, S. H. Liu, and C. P. Lee, “Spin-dependent delay time in electronic resonant tunneling at zero magnetic field”, Solid State Comm., vol.115, pp. 477-481, 2000.

    [119] W. C. Liu, Y. H. Wang, C. Y. Chang, and S. A. Liao, April, “GaAs n-i-p-i-n barrier transistor with ultra-thin p AlGaAs base prepared by molecular beam epitaxy,” IEE Proc. (I), vol. 133, no. 2, pp. 47-48, 1986.

    [120] W. C. Liu and W. S. Lour, “AlGaAs/GaAs heterostructure-emitter bipolar transistor (HEBT) prepared by molecular beam epitaxy,” Solid-State Electron., vol. 34, no. 7, pp. 717-722, 1991.

    [121] W. C. Liu, D. F. Guo, C. Y. Sun, and W. S. Lour, “Morphological defects on Be-doped AlGaAs layers grown by MBE,” J. Cryst. Growth, vol. 114, no. 4, pp. 700-706, 1991.

    [122] W. C. Liu, W. S. Lour, and D. F. Guo, “A new AlGaAs/GaAs double hetrostructure-emitter bipolar transistor prepared by molecular beam epitaxy,” Appl. Phys. Lett., vol. 60, no. 3, pp. 362-364, 1992.

    [123] W. C. Liu, W. S. Lour, and Y. H. Wang, “Investigation of AlGaAs/GaAs superlattice-emitter resonant-tunneling bipolar transistor (SE-RTBT),” IEEE Trans. Electron Device, vol. 39, no. 10, pp. 2214-2219, 1992.

    [124] W. C. Liu, D. F. Guo, and W. S. Lour, “Application of an emitter-edge thinning technique to GaAs/AlGaAs double hetrostructure-emitter bipolar transistor,” Appl. Phys. Lett., vol. 61, no. 12, pp. 1441-1443, 1992.

    [125] W. C. Liu, D. F. Guo, and W. S. Lour, “AlGaAs/GaAs double hetrostructure-emitter bipolar transistor (DHEBT),” IEEE Trans. Electron Device, vol. 39, no. 12, pp. 2740-2744, 1992.

    [126] J. H. Tsai, S. Y. Cheng, L. W. Laih, and W. C. Liu, “AlGaAs/InGaAs/GaAs heterostructure-emitter and heterostructure-base transistor (HEHBT),” IEE Electron. Lett., vol. 32, no. 18, pp. 1720-1721, 1996.

    [127] C. C. Cheng, J. H. Tsai, and W. C. Liu, “Multiple switching phenomena of AlGaAs/InGaAs/GaAs heterostructure transistors,” Jpn. J. Appl. Phys., vol. 36, no. 3A, pp. 980-983, 1997.

    [128] C. C. Cheng, J. H. Tsai, and W. C. Liu, “Multiple switching phenomena of AlGaAs/InGaAs/GaAs heterostructure transistors,” Jpn. J. Appl. Phys., vol. 36, no. 3A, pp. 980-983, 1997.

    [129] W. C. Liu, W. C. Wang, J. Y. Chen, H. J. Pan, S. Y. Cheng, K. B. Thei, and W. L. Chang, “A novel InP/InAlGaAs negative-differential-resistance heterojunction bipolar transistor (NDR-HBT) with interesting topee-shaped current-voltage characteristics,” IEEE Electron Device Lett., vol. 20, no. 10, pp. 510-513, 1999.

    [130] I. Lundström and L. G. Petersson, “ Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol., A vol.14 pp.1539-1545, 1996.

    下載圖示 校內:2005-07-10公開
    校外:2005-07-10公開
    QR CODE