簡易檢索 / 詳目顯示

研究生: 許承聖
Hsu, Cheng-Sheng
論文名稱: 波浪與潛堤互制之水動力特性實驗研究
Experimental Study on Hydrodynamic Characteristics of Waves Interacting with a Submerged Bar
指導教授: 吳昀達
Wu, Yun-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 128
中文關鍵詞: 規則波孤立波潛堤碎波PIVADV
外文關鍵詞: Regular wave, Solitary wave, PIV, ADV, Submerged bar, Wave breaking
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣候變遷所帶來的沿海威脅日益嚴重,特別是在海平面上升與熱帶氣旋頻繁發生的背景下,如何有效降低波浪對沿岸區域的影響已成為全球共同關注的課題。根據政府間氣候變遷專門委員會(IPCC)報告,全球平均海平面在1901年至2018年間上升15至25公分,且近期的上升速率明顯加快。此外,極端氣候事件的強度增加,進一步加劇了沿海地區的風險,導致海岸侵蝕與生態系統退化,影響生物多樣性及漁業資源。潛堤作為海岸保護措施之一,廣泛應用於消散波浪能量,減輕波浪對岸線的侵蝕與破壞。當波浪傳遞至潛堤前方時,部分能量會被反射,其餘則越過堤頂向後傳遞,在通過堤頂的淺水區時,波浪會因淺化效應而變形,然而,目前對於潛堤後方因坡度突然下降而導致波浪碎波的詳細動態特性仍缺乏深入研究。

    本研究透過實驗方式,於國立成功大學水利與海洋工程學系之二維玻璃波浪水槽進行了詳細的流場分析實驗。水槽全長20米,寬0.5米,深0.8米,為便於觀測採用玻璃牆與玻璃底設計。實驗中使用可程式化數位伺服馬達驅動的活塞式造波器,其衝程達2米,能產生規則波、孤立波等不同類型波形,模擬實際海岸波浪條件。造波控制以LabVIEW介面設計的自動化程式進行驅動。

    水槽內配置九組超音波波高計,其中WG1-WG9依序設置於造波板前方、堤前、堤趾、堤頂與堤後等重要位置,並針對堤的不同區段進行水位監測。此外,設置三個量測視窗(FOV1~FOV3)對應堤趾、堤頂與堤後,透過雷射光頁與高速攝影機進行粒子追蹤,量測區域覆蓋自水面至底床之垂直流場。為提高測速精度,實驗採用二氧化鈦(TiO₂)作為示踪粒子,其具備高折射率與良好穩定性,適合於水中PIV實驗使用。高速攝影機設定為每秒1000幀的拍攝速率,並與波高計同步觸發,確保資料時序一致。所得影像以Davis進行分析,設定interrogation window並透過中值濾波器去除異常向量。為強化分析的可靠度,每組實驗重複進行至少30次以計算整體平均與波動速度。另外,在堤後位置架設聲學都卜勒測速儀(Acoustic Doppler Velocimetry, ADV)進行流速的量測,旨在與粒子影像測速法(Particle Image Velocimetry, PIV)的結果進行交叉比對與驗證。透過比較ADV所測得的單點流速時序,與PIV在同一位置的流場數據,可評估兩種不同量測技術的一致性,並確保整體流場分析的準確度與可靠性。

    研究結果顯示,潛堤後方坡度的突然下降會有效促使波浪碎波現象發生,並顯示波浪高度越大,其碎波效果越明顯,波浪能量的消散效果也更佳。與理論波形對照後可見,本實驗生成之波形具良好穩定性與重現性,且PIV所測得速度場與自由液面變化高度吻合。

    The coastal threats driven by climate change are becoming increasingly severe, particularly due to sea-level rise and the heightened frequency of tropical cyclones. This underscores the urgent need for effective strategies to mitigate wave impacts on coastal areas. The intensification of extreme weather events has further exacerbated coastal risks, leading to shoreline erosion and ecosystem degradation, affecting biodiversity and fishery resources. Submerged bars are widely used in coastal protection engineering to dissipate wave energy and reduce erosion. When waves propagate over a submerged bar, part of the energy is reflected, while the remainder is transmitted over the crest. In the shallow region above the crest, waves deform due to shoaling effects, which may trigger wave breaking.
    This study conducts detailed experimental flow field analysis in a two-dimensional glass-walled wave flume at the Department of Hydraulic and Ocean Engineering, National Cheng Kung University, measuring 20 m in length, 0.5 m in width, and 0.8 m in depth. A piston-type wavemaker generated various wave types, including regular and solitary waves. Nine ultrasonic wave gauges were deployed to monitor time histories of water surface variations. In addition, three measurement windows (FOV1–FOV3) corresponding to the toe, crest, and rear of the bar were equipped with a Particle Image Velocimetry (PIV) system, utilizing laser light sheets and a high-speed camera to measure vertical flow fields from the free surface to the seabed. An Acoustic Doppler Velocimetry (ADV) system was also installed behind the bar to conduct measurements for cross-validation with the PIV results.
    The experimental results indicate that wave breaking primarily occurs due to shoaling over the shallow crest of the submerged bar, with larger wave heights producing more pronounced breaking and energy dissipation. Comparisons with theoretical waveforms confirm the stability and reproducibility of the generated waves, while the PIV-measured velocity fields exhibit high consistency with free surface variations. By comparing different wave types and heights, this study quantitatively evaluates the influence of wave breaking on wave energy dissipation, providing valuable references for designing coastal protection structures and validating related numerical models.

    摘要 I Extended abstract III 誌謝 XXIV 目錄 XXV 圖目錄 XXVIII 表目錄 XXXII 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-2-1 自由液面量測 4 1-2-2 流場量測 7 1-2-3 ADV 量測 11 1-3 研究目的 13 1-4 本文架構 16 第二章 實驗配置 17 2-1 斷面水槽 17 2-1-1 水槽結構與配置 17 2-1-2 造波機 20 2-2 波高計與資料擷取系統 22 2-2-1 超音波式波高計 22 2-2-2 波高計率定 23 2-2-3 資料擷取系統與設置 25 2-3 速度量測系統 27 2-3-1 雷射光頁 27 2-3-2 高速攝影機 28 2-3-3 高速攝影機量測範圍 31 2-3-4 二氧化鈦 31 2-3-5 ADV 原理 32 2-4 分析軟體 35 2-5 潛堤 35 2-6 消波 37 第三章 研究方法 40 3-1 實驗條件 40 3-2 自由液面 43 3-2-1 自由液面量測 43 3-2-2 波浪性質 44 3-2-3 頻譜分析 45 3-3 PIV 量測 47 3-4 速度場 50 3-5 整體平均 52 3-6 ADV 分析方法 53 3-6-1 功率譜密度 53 第四章 結果與討論 54 4-1 真實波高量測資料 54 4-1-1 波高計之時間序列 54 4-1-2 波浪性質 57 4-1-3 頻譜分析 61 4-2 流場數據分析 64 4-2-1 堤前速度場與速度剖面 64 4-2-2 堤頂速度場與速度剖面 67 4-2-3 堤後速度場與速度剖面 71 4-3 ADV 分析 74 4-3-1 速度量測 74 4-3-2 堤後ADV 與PIV 之比較 78 4-3-3 ADV 之頻譜分析 82 第五章 結論與建議 84 5-1 結論 84 5-2 建議 87 參考文獻 88

    [1]Atkinson, C., Coudert, S., Foucaut, J.-M., Stanislas, M., Soria, J., 2011. The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer. Experiments in Fluids 50 (4), 1031-1056.
    [2] Bartholomeusz, E.F., 1958. The reflexion of long waves at a step. Mathematical Proceedings of the Cambridge Philosophical Society 54 (1), 106-118.
    [3] Battjes, J.A., 1988. Surf-zone dynamics. Annual Review of Fluid Mechanics 20 (1), 257-291.
    [4] Beji, S., Battjes, J.A., 1993. Experimental investigation of wave propagation over a bar. Coastal Engineering 19 (1-2), 151-162.
    [5] Beji, S., Battjes, J.A., 1994. Numerical simulation of nonlinear wave propagation over a bar. Coastal Engineering 23 (1), 1-16.
    [6] Brocchini, M., Marini, F., Postacchini, M., Zitti, G., Falchi, M., Xie, Z., 2022.Interaction between breaking-induced vortices and near-bed structures. Part 1.Experimental and theoretical investigation. Journal of Fluid Mechanics 940.
    [7] Byrne, R.J., 1969. Field occurrences of induced multiple gravity waves. Journal of Geophysical Research 74 (10), 2590-2596.
    [8] Carevic, D., Loncar, G., Prsic, M., 2013. Wave parameters after smooth submerged breakwater. Coastal Engineering 79, 32-41.
    [9] Chang, K.-A., Hsu, T.-J., Liu, P.L.F., 2001. Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle part 1. Solitary waves. Coastal Engineering 44 (1), 13-36.
    [10] Chang, K.-A., Hsu, T.-J., Liu, P.L.F., 2005. Vortex generation and evolution in waterwaves propagating over a submerged rectangular obstacle part 2: Cnoidal waves. Coastal Engineering 52 (3), 257-283.
    [11] Chang, K.-A., Liu, P.L.F., 1999. Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Physics of Fluids 11 (11), 3390-3400.
    [12] Chao, W.-T., Liang, S.-J., Young, C.-C., Ting, C.-L., 2021. Interactions of solitary wave with a submerged step: Experiments and simulations. Water 13 (9), 1302.
    [13] Chaplin, J.R., 1984. Nonlinear forces on a horizontal cylinder beneath waves. Journal of Fluid Mechanics 147 (-1), 449.
    [14] Chyu, C.K., Rockwell, D., 1996. Near-wake structure of an oscillating cylinder: Effect of controlled shear-layer vortices. Journal of Fluid Mechanics 322 (-1), 21-49.
    [15] Clavero, M., Longo, S., Chiapponi, L., Losada, M.A., 2016. 3d flow measurements in regular breaking waves past a fixed submerged bar on an impermeable plane slope. Journal of Fluid Mechanics 802, 490-527.
    [16] Dattatri, J., Raman, H., Shankar, N.J., 1978. Performance characteristics of submergedbreakwaters. American Society of Civil Engineers, p. 160.
    [17] Davies, A.G., Heathershaw, A.D., 1984. Surface-wave propagation over sinusoidally varying topography. Journal of Fluid Mechanics 144, 419-443.
    [18] Dingemans, M., 1989. Shift in characteristic wave frequency; some spectra in wave basin and in haringvliet region, Technical report, p. 56.
    [19] Dingemans, M.W., 1994. Comparison of computations with boussinesq-like models and laboratory measurements. Deltares (WL).
    [20] Drouin, A., Ouellet, Y., 1988. Experimental study of immersed plates used as breakwaters. American Society of Civil Engineers.
    [21] Ghafari, A., Tavakoli, M.R., Nili-Ahmadabadi, M., Teimouri, K., Kim, K.C., 2021.Investigation of interaction between solitary wave and two submerged rectangular obstacles. Ocean Engineering 237, 109659.
    [22] Goring, D.G., Nikora, V.I., 2002. Despiking acoustic doppler velocimeter data. Journal of Hydraulic Engineering 128 (1), 117-126.
    [23] Goring, D.G., Raichlen, F., 1978. Tsunamis, the propagation of long waves onto a shelf.WM Keck Laboratory of Hydraulics and Water Resources, Division of Engineering and Applied Science, California Institute of Technology.
    [24] Grue, J., 1992. Nonlinear water waves at a submerged obstacle or bottom topography.Journal of Fluid Mechanics 244 (-1), 455.
    [25] Hart, D.P., 2000. Piv error correction. Experiments in Fluids 29 (1), 13-22.
    [26] Huang, C.-J., Chen, C.-H., Chang, H.-H., 2011. Propagation of water waves over permeable rippled beds. Ocean Engineering 38 (4), 579-591.
    [27] Huang, C.-J., Dong, C.-M., 1999. Wave deformation and vortex generation in water waves propagating over a submerged dike. Coastal Engineering 37 (2), 123-148.
    [28] Huang, Z.-C., Hsiao, S.-C., Hwung, H.-H., Chang, K.-A., 2009. Turbulence and energy dissipations of surf-zone spilling breakers. Coastal Engineering 56 (7), 733-746.
    [29] Hughes, S., 1993. Physical models and laboratory techniques in coastal engineering.Advanced Series in Ocean Engineering 7.
    [30] Hughes, S.A., 2004. Wave momentum flux parameter: A descriptor for nearshore waves.Coastal Engineering 51 (11-12), 1067-1084.
    [31] Jeffreys, H., 1944. Motion of waves in shallow water. Note on the offshore bar problem and reflexion from a bar. Ministry of Supply Wave Report, London (3), 3.
    [32] Jesson, M., Sterling, M., Bridgeman, J., 2013. Despiking velocity time-series—optimisation through the combination of spike detection and replacement methods.Flow Measurement and Instrumentation 30, 45-51.
    [33] Johnson, J.W., Fuchs, R.A., Morison, J.R., 1951. The damping action of submerged breakwaters. Eos, Transactions American Geophysical Union 32 (5), 704-718.
    [34] Jolas, P., 1960. Passage de la houle sur un seuil. La Houille Blanche 46 (2), 148-152.
    [35] Kim, J.-B., Min, E.-H., Koo, W., 2023. Experimental and numerical study on the characteristics of free surface waves by the movement of a circular cylinder-shaped submerged body in a single fluid layer. Journal of Ocean Engineering and Technology 37 (3), 89-98.
    [36] Kimmoun, O., Branger, H., 2007. A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach. Journal of Fluid Mechanics 588, 353-397.
    [37] Kojima, H., Ijima, T., Yoshida, A., 1991. Decomposition and interception of long waves by a submerged horizontal plate. American Society of Civil Engineers.
    [38] Kriebel, D.L., 1992. Vertical wave barriers: Wave transmission and wave forces.American Society of Civil Engineers.
    [39] Lamb, H., 1932. Hydrodynamics. 6th edition. Cambridge University Press.
    [40] Leweke, T., Le Dizès, S., Williamson, C.H.K., 2016. Dynamics and instabilities of vortex pairs. Annual Review of Fluid Mechanics 48 (1), 507-541.
    [41] Li, Y., Draycott, S., Adcock, T.A.A., Van Den Bremer, T.S., 2021. Surface wavepackets subject to an abrupt depth change. Part 2. Experimental analysis. Journal of Fluid Mechanics 915.
    [42] Liao, Z., Liu, Y., Liu, W., Li, S., Zou, Q., 2024. Experimental investigation of evolution of infragravity waves over a large-scale shoal. Coastal Engineering, 104687.
    [43] Liberatore, G., Petti, M., 1993. Wave transformations over a submerged bar:Experiments and theoretical interpretations. American Society of Civil Engineers.
    [44] Lima Neto, I., 2018. Wave reflection from submerged rectangular obstacles:Experiments and predictive formula. Acta Scientiarum. Technology 40, 37520.
    [45] Lin, J.C., Phetkong, N., Sheridan, J., Rockwell, D., 1996. Controlled motion of a cylinder through a free surface: Effect of depth of penetration. Journal of Fluids and Structures 10 (4), 309-317.
    [46] Lin, J.C., Rockwell, D., 1997. Quantitative interpretation of vortices from a cylinder oscillating in quiescent fluid. Experiments in Fluids 23 (2), 99-104.
    [47] Lin, P., Liu, P.L.F., 1998. A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics 359, 239-264.
    [48] Longuet-Higgins, M.S., 1977. The mean forces exerted by waves on floating or submerged bodies with applications to sand bars and wave power machines.Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 352 (1671), 463-480.
    [49] Losada, I.J., Silva, R., Losada, M.A., 1996. 3-d non-breaking regular wave interaction with submerged breakwaters. Coastal Engineering 28 (1-4), 229-248.
    [50] Massel, S.R., 1983. Harmonic generation by waves propagating over a submerged step.Coastal Engineering 7 (4), 357-380.
    [51] Mei, C.C., Black, J.L., 1969. Scattering of surface waves by rectangular obstacles in waters of finite depth. Journal of Fluid Mechanics 38 (3), 499-511.
    [52] Nadaoka, K., Beji, S., Ono, O., 1994. Development of a fully-dispersive nonlinear wave model and its experimental verification (in japanese).
    [53] O'Hare, T.J., Davies, A.G., 1990. A laboratory study of sand bar evolution. Journal of Coastal Research 6 (3), 531-544.
    [54] Persoons, T., O’Donovan, T.S., 2010. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging. Sensors 11 (1), 1-18.
    [55] Poupardin, A., Perret, G., Pinon, G., Bourneton, N., Rivoalen, E., Brossard, J., 2012.Vortex kinematic around a submerged plate under water waves. Part i: Experimental analysis. European Journal of Mechanics - B/Fluids 34, 47-55.
    [56] Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T., Kompenhans, J., 2018.Particle image velocimetry: A practical guide. springer.
    [57] Rageh, O.S., Koraim, A.S., 2010. Hydraulic performance of vertical walls with horizontal slots used as breakwater. Coastal Engineering 57 (8), 745-756.
    [58] Rey, V., Belzons, M., Guazzelli, E., 1992. Propagation of surface gravity waves over a rectangular submerged bar. Journal of Fluid Mechanics 235 (-1), 453.
    [59] Ryu, Y., Hur, D., Park, S., Chun, H.H., Jung, K.H., 2016. Wave energy dissipation by permeable and impermeable submerged breakwaters. Journal of Applied Fluid Mechanics 9 (6), 2635-2645.
    [60] Sarno, L., Tai, Y.-C., Carravetta, A., Martino, R., Nicolina Papa, M., Kuo, C.-Y., 2019.Challenges and improvements in applying a particle image velocimetry (piv) approach to granular flows. Journal of Physics: Conference Series 1249 (1), 012011.
    [61] Seabra-Santos, F.J., Renouard, D.P., Temperville, A.M., 1987. Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. Journal of Fluid Mechanics 176 (-1), 117.
    [62] Sheridan, J., Lin, J.C., Rockwell, D., 1997. Flow past a cylinder close to a free surface.Journal of Fluid Mechanics 330, 1-30.
    [63] Soria, J., 2008. Effect of velocity gradients on 3d cross-correlation piv analysis, 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal,7-10 July, pp. 07-10.
    [64] Tang, C.-J., Chang, J.-H., 1998. Flow separation during solitary wave passing over submerged obstacle. Journal of Hydraulic Engineering 124 (7), 742-749.
    [65] Ting, F.C.K., 2001. Laboratory study of wave and turbulence velocities in a broadbanded irregular wave surf zone. Coastal Engineering 43 (3-4), 183-208.
    [66] Ting, F.C.K., Kim, Y.-K., 1994. Vortex generation in water waves propagating over a submerged obstacle. Coastal Engineering 24 (1-2), 23-49.
    [67] Trulsen, K., Raustøl, A., Jorde, S., Rye, L.B., 2020. Extreme wave statistics of longcrested irregular waves over a shoal. Journal of Fluid Mechanics 882.
    [68] Welch, P., 1967. The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 15 (2), 70-73.
    [69] Williams, J.A., 1965. A nonlinear problem in surface water waves. University ofCalifornia, Berkeley, United States -- California, p. 257.
    [70] Wu, Y.-T., Hsiao, S.-C., 2013. Turbulence induced by a solitary wave propagating over a submerged object using particle image velocimetry. Journal of Coastal Research 65,416-421.
    [71] Wu, Y.-T., Hsiao, S.-C., Huang, Z.-C., Hwang, K.-S., 2012. Propagation of solitary waves over a bottom-mounted barrier. Coastal Engineering 62, 31-47.
    [72] Yan, B., Zhang, R., Zhang, P., 2020. Flume experiment on the sediment-retaining effect of submerged breakwaters under the combined action of waves and currents. Journal of Marine Science and Engineering 8 (5), 340.
    [73]Young, I.R., 1989. Wave transformation over coral reefs. Journal of Geophysical Research: Oceans 94 (C7), 9779-9789.

    無法下載圖示 校內:2030-08-19公開
    校外:2030-08-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE