| 研究生: |
陳祈安 Chen, Chi-An |
|---|---|
| 論文名稱: |
內部抽氣角度對急彎漸縮-漸擴肋化雙流道熱傳與壓損性能影響之實驗研究 An experimental study for the effect of internal effusion angle on heat-transfer and pressure-drop performances of convergent-divergent ribbed two-pass channel with sharp bend |
| 指導教授: |
張始偉
Chang, Shyy-Woei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 內部抽氣 、漸縮-漸擴急彎雙流道 、燃氣渦輪葉片冷卻 、熱交換器 |
| 外文關鍵詞: | Internal Effusion, Convergent-Divergent Two-Pass Channel, Gas Turbine Blade Cooling, Heat Exchanger |
| 相關次數: | 點閱:133 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗比較三組內部抽氣與無內部抽氣之肋化漸縮-漸擴急彎雙流道詳細紐賽數分佈、凡寧摩擦係數及空氣熱傳性能係數,探討內部抽氣對其熱傳強化性能產生之影響。研究重點比較分析內部抽氣角度為 0°或+22.5° 時,受抽氣角度變化影響所產生之流場結構改變,造成其紐賽數分佈自無內部抽氣熱傳、壓損特徵所產生之差異性變化。於測試雷諾數介於5000 至 15,000之範圍,抽氣管道之管壁面積平均紐賽數(凡寧摩擦係數)於0°、+22.5° 和 - 22.5°抽氣角度時,分別介於 91.39–187.68 (0.21–0.22) 、100.43–196.08 (0.17–0.19) 和 90.67–143.01 (0.22–0.22)之範圍,其對應之空氣熱傳性能係數分別為 1.74–1.33、2.07–1.47、和 1.71–1.01。應用本研究產生之實驗數據庫,回歸出計算各抽氣條件管道區域平均紐賽數和凡寧摩擦係數之實驗公式,提供相關產業與研究應用。
The present experimental study compares the detailed Nusselt number distributions, the Fanning friction factors, and the aerothermal performance indices measured from the convergent-divergent wavy two-pass ribbed channels without effusion and with the internal effusion at three angles. The effect of internal effusion on the performances of heat transfer enhancement are examined. The present research focuses on the heat-transfer and pressure-drop variations from those without effusion at the effusion angles of 0° or +22.5° owing to the attendant flow modifications. With inlet Reynolds numbers between 5,000 and 15,000 at the effusion angles of 0°, 22.5°, and - 22.5°, the area-averaged endwall Nusselt numbers (Fanning friction factors) are in the respective ranges of 91.39-187.68 (0.21-0.22), 100.43-196.08 (0.17-0.19), and 90.67-143.01 (0.22-0.22). The corresponding ranges of aerothermal performance indices are 1.74-1.33, 2.07-1.47, and 1.71-1.01, respectively. Based on the present data bank, the empirical correlations that evaluate the area-averaged endwall Nusselt numbers and Fanning friction factors without effusion and with the internal effusion at three different angles are generated to assist the relevant applications.
[1] N.S. Mahmoud, H.M. Jaffal, A.A. Imran, Performance evaluation of serpentine and multi-channel heat sinks based on energy and exergy analyses, Appl. Therm. Eng. 186 (2021), 116475 1–15.
[2] C.Y. Zhao, W.Q. Tao, A three dimensional investigation of turbulent flow and heat transfer around sharp 180-deg turns in two-pass rib-roughened channels, Int.
Comm. Heat Mass Transf. 24 (1997) 587–596.
[3] S.V. Ekkad, J.-C. Han, Detailed heat transfer distributions in two-pass square
channels with rib turbulators, Int. J. Heat Mass Transf. 40 (1997) 2525–2537.
[4] S. Mochizuki, A. Murata, R. Shibata, W.-J. Yang, Detailed measurements of local
heat transfer coefficients in turbulent flow through smooth and rib-roughened
serpentine passages with a 180◦ sharp bend, Int. J. Heat Mass Transf. 42 (1999)
1925–1934.
[5] Y. Chen, D.E. Nikitopoulos, R. Hibbs, S. Acharya, T.A. Myrum, Detailed mass
transfer distribution in a ribbed coolant passage with a 180◦ bend, Int. J. Heat Mass
Transf. 43 (2000) 1479–1492.
[6] S.Y. Son, K.D. Kihm, J.-C. Han, PIV flow measurements for heat transfer
characterization in two-pass square channels with smooth and 90◦ ribbed walls,
Int. J. Heat Mass Transf. 45 (2002) 4809–4822.
[7] P.R. Chandra, C.R. Alexander, J.-C. Han, Heat transfer and friction behaviors in
rectangular channels with varying number of ribbed walls, Int. J. Heat Mass Transf.
46 (2003) 481–495.
[8] A.K. Viswanathan, D.K. Tafti, Detached eddy simulation of turbulent flow and heat transfer in a two-pass internal cooling duct, Int. J. Heat Fluid Flow 27 (2006) 1–20.
[9] P. Singh, B.V. Ravi, S.V. Ekkad, Experimental and numerical study of heat transfer
due to developing flow in a two-pass rib roughened square duct, Int. J. Heat Mass
Transf. 102 (2016) 1245–1256.
[10] B.V. Ravi, P. Singh, S.V. Ekkad, Numerical investigation of turbulent flow and heat transfer in two-pass ribbed channels, Int. J. Heat Mass Transf. 112 (2017) 31–43.
[11] J. Liu, S. Hussain, J. Wang, L. Wang, G. Xie, B. Sunden, Heat transfer enhancement and turbulent flow in a high aspect ratio channel (4:1) with ribs of various truncation types and arrangements, Int. J. Thermal Sci. 123 (2018) 99–116.
[12] S.V. Ekkad, G. Pamula, M. Shantiniketanam, Detailed heat transfer measurements inside straight and tapered two-pass channels with rib turbulators, Exp. Thermal Fluid Sci. 22 (2000) 155–163.
[13] H. Yan, L. Luo, W. Du, S. Wang, B. Sunden, D. Huang, Flow structure and heat
transfer characteristics in a ribbed two-pass channel with varying divider
inclination angle, Int. J. Thermal Sci. 166 (2021), 106969 1–18.
[14] T.M. Liou, S.W. Chang, C.Y. Huang, S.P. Chan, Y.A. Lan, Particle image velocimetry and infrared thermography measurements in a two-pass 90-deg ribbed parallelogram channel, Int. J. Heat Mass Transf. 93 (2016) 1175–1189.
[15] S.V. Ekkad, Y. Huang, J.-C. Han, Detailed heat transfer distributions in two-pass
square channels with rib turbulators and bleed holes, Int. J. Heat Mass Transf. 41
(1998) 3781–3791.
[16] S.W. Chang, Z.-X. Cai, Heat transfer and pressure drop in two-pass rib-roughened square channels with bleed from sharp bend, Int. J. Heat Fluid Flow 31 (2010) 19–31.
[17] Z. Shen, H. Qu, D. Zhang, Y. Xie, Effect of bleed hole on flow and heat transfer performance of U-shaped channel with dimple structure, Int. J. Heat Mass Transf. 66 (2013) 10–22.
[18] X. Liu, Z. Tao, S. Ding, G. Xu, Experimental investigation of heat transfer characteristics in a variable cross-sectioned two-pass channel with combined film cooling holes and inclined ribs, Appl. Therm. Eng. 50 (2013) 1186–1193.
[19] D. Chanteloup, J. von Wolfersdorf, Analysis of a transient heat transfer experiment in a two pass internal coolant passage, Int. J. Heat Mass Transf. 47 (2004) 5313–5322.
[20] C. Wang, L. Wang, B. Sunden, Heat transfer and pressure drop in a smooth and ribbed turn region of a two-pass channel, Appl. Therm. Eng. 85 (2015) 225–233.
[21] T. Gao, J. Zhu, J. Li, J. Gong, Q. Xia, Improving heat transfer performance in two-pass ribbed channel by the optimized secondary flow via bend shape modification, Int. Comm. Heat Mass Transf. 24 (1997) 587–596.
[22] B. Wu, X. Yang, Z. Liu, Z. Feng, Effects of novel turning vanes on pressure loss and tip-wall heat transfer in an idealized U-bend channel, Int. Comm. Heat Mass Transf. 121 (2021), 105072 1–18.
[23] Z. Guo, Y. Rao, Y. Li, W. Wang, Experimental and numerical investigation of turbulent flow heat transfer in a serpentine channel with multiple short ribbed passes and turning vanes, Int. J. Thermal Sci. 165 (2021), 106931 1–13.
[24] J. Pu, Z.-Q. Ke, J.-H. Wang, H.-D. You, Z.-N. Du, An experimental investigation on fluid flow characteristics in a real coolant channel of LP turbine blade with PIV technique, Exp. Thermal Fluid Sci. 45 (2013) 43–53.
[25] R.-B. Yua, J. Pua, P. Wang, J.-H. Wang, B. Wan, J.-X. Luo, S.-Q. Tian, Auxiliary hole influence on internal flow characteristics in bend region of a real investmentcasting blade coolant channel, Exp. Thermal Fluid Sci. 102 (2019) 123–136.
[26] X. Wang, H. Xua, J. Wang, W. Song, L. Wang, High pressure turbine blade internal cooling in a realistic rib roughened two-pass channel, Int. J. Heat Mass Transf. 170 (2021), 121019 1–14.
[27] P. Singh, J. Pandit, S.V. Ekkad, Characterization of heat transfer enhancement and frictional losses in a two-pass square duct featuring unique combinations of rib turbulators and cylindrical dimples, Int. J. Heat Mass Transf. 106 (2017) 629–647.
[28] G. Zhang, J. Liu, B. Sund’en, G. Xie, Combined experimental and numerical studies on flow characteristic and heat transfer in ribbed channels with vortex generators of various types and arrangements, Int. J. Thermal Sci. 167 (2021), 107036 1–14.
[29] T.-M. Jeng, S.-C. Tzeng, Y.-C. Yang, Detailed measurements of heat transfer coefficients in a 180-deg rectangular turned channel with the perforation divider, Int. J. Heat Mass Transf. 54 (2011) 4823–4833.
[30] Y. Luan, L. Yang, S. Bu, T. Sun, H. Sun, P. Zunino, Effect of connecting holes on flow and heat transfer in a two-pass channel with and without rib turbulators, Int. J. Heat Mass Transf. 133 (2019) 80–95.
[31] G. Zhang, B. Sund’en, G. Xie, Combined experimental and numerical investigations on heat transfer augmentation in truncated ribbed channels designed by adopting fractal theory, Int. Comm. Heat Mass Transf. 121 (2021), 105080 1–19.
[32] J. Liu, S. Hussain, W. Wang, G. Xie, B. Sund’en, Experimental and numerical investigations of heat transfer and fluid flow in a rectangular channel with perforated ribs, Int. Comm. Heat Mass Transf. 121 (2021), 105083 1–17.
[33] P.-S. Wu, S.W. Chang, C.-S. Chen, C.-C. Weng, Y.-R. Jiang, S.-H. Shih, Numerical flow and experimental heat transfer of S-shaped two-pass square channel with cooling applications to gas turbine blade, Int. J. Heat Mass Transf. 108 (2017) 362–373.
[34] S.W. Chang, T.-M. Liou, K.-C. Yu, S.-S. thermal-hydraulic performance of longitudinal wavy rib along wavy two-pass channel, Appl. Therm. Eng. 133 (2018) 224–236.
[35] D.L. Gee, R.L. Webb, Forced convection heat transfer in helically rib-roughened tubes, Int. J. Heat Mass Transf. 23 (1980) 1127–1136.
[36] S.J. Kline, F.A. McClintock, Describing uncertainties in single sample experiments, Mech. Eng. 75 (1953) 3–8.
[37] H. Iacovides, D.C. Jackson, G. Kelemenis, B.E. Launder, Y.-M. Yuan, Flow and heat transfer in a rotating U-bend with 45 ribs, Int. J. Heat Fluid Flow 22 (2001) 308–314.
[38] K. Yousefi, R. Saleh, P. Zahedi, Numerical study of blowing and suction slot geometry optimization on NACA 0012 airfoil, J. Mech. Sci. Technol. 28 (2014) 1297–1310.
[39] D.G. Macmanus, J.A. Eaton, Flow physics of discrete boundary layer suction–measurements and predictions, J. Fluid Mech. 417 (2000) 47–75.