簡易檢索 / 詳目顯示

研究生: 李冠慰
Lee, Kuan-Wei
論文名稱: 液相氧化法於砷化鎵系列材料之研究與應用
Investigation of Liquid Phase Oxidation on GaAs-based Materials and Its Applications
指導教授: 王永和
Wang, Yeong-Her
洪茂峰
Houng, Mau-Phon
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 151
中文關鍵詞: 液相氧化異質接面場效電晶體金氧半
外文關鍵詞: MOS, liquid phase oxidation, HEMT
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種應用在砷化鎵系列材料(砷化鋁鎵AlGaAs、砷化銦鎵InGaAs、砷化銦鋁InAlAs與磷化銦鎵InGaP)的新穎液相氧化技術(LPCEO)。只要將砷化鎵系列的晶片浸入調配好的成長液中即可在低溫環境下(30 oC-70 oC)形成一均勻的氧化層,完全不需要額外的電壓或能量。利用此液相氧化法在砷化鎵相關材料,並將其應用於高速場效電晶體,即形成金氧半-異質接面場效電晶體(MOS-HEMT)。金氧半-異質接面場效電晶體同時結合了金氧半的低漏電流與異質接面場效電晶體的高移動率二維電子雲等優點。
    在砷化鋁鎵的氧化方面,吾人藉由歐傑、二次離子質譜、X光光譜與拉曼分析得知,該氧化層主要由三氧化二鎵、三氧化二砷與三氧化二鋁所組成。此外還發現當氧化時間過長時,鋁在2p軌域的X光光譜顯示三氧化二鋁訊號會因pH值下降而變弱甚至消失。另一方面,氧化薄膜藉由熱退火後,在直流與電容特性上皆有不錯的改善。對於所研製砷化鋁鎵/砷化銦鎵金氧半-假晶異質接面場效電晶體(AlGaAs/InGaAs MOS-PHEMT)則擁有較大的閘極擺幅、較高的崩潰電壓、較小的漏電流與改善的高頻特性。
    在砷化銦鎵的氧化方面,該氧化層主要由三氧化二鎵、三氧化二砷與三氧化二銦組成。砷化銦鋁的氧化方面,該氧化層主要由三氧化二砷、三氧化二銦與三氧化二鋁組成。值得注意地,當氧化時間過長時,鋁在2p軌域的X光光譜顯示三氧化二鋁訊號會因pH值下降而變弱甚至消失。同樣地,該氧化薄膜藉由熱退火後,其直流與電容特性皆有不錯的改善。對於利用砷化銦鎵的氧化物或是砷化銦鋁的氧化物形成閘極氧化層來應用於砷化銦鋁/砷化銦鎵金氧半-變晶異質接面場效電晶體(InAlAs/InGaAs MOS-MHEMT),則擁有較大的閘極擺幅、較佳的飽合特性、較高的崩潰電壓、較小的鐘形閘極漏電流與改善的高頻特性等優點。
    在磷化銦鎵的氧化方面,雖然成長速率緩慢(小於10 奈米/小時),仍然能形成一氧化薄膜。該氧化層主要由三氧化二鎵與四氧磷化銦組成。對於所研製的磷化銦鎵/砷化銦鎵金氧半-假晶異質接面場效電晶體(InGaP/InGaAs MOS- PHEMT),則擁有較大的閘極擺幅、較高的崩潰電壓與較小的閘極漏電流。另外,吾人亦藉由比較脈衝暫態量測的結果,顯示本液相氧化法能降低表面陷阱態進而減少漏電流。
    因此,本論文所提出之簡易、低溫的液相氧化法可以在傳統三五族高速場效電晶體元件的表面上形成一有效的氧化層(或披覆層),極具高功率與高速的應用潛力。

    A newly developed liquid-phase oxidation technique, named liquid phase chemical-enhanced oxidation (LPCEO), for GaAs-based device applications has been proposed. The GaAs-based wafers are only immersed in a growth solution to form the oxidized film on the GaAs-based layer (e.g., AlGaAs, InGaAs, InAlAs, InGaP, and so on) at low temperature (from 30-70 oC) without any assisted energy source. Following the preliminary researches of the LPCEO-grown oxide films, the MOS-HEMTs with the LPCEO technique have been successfully demonstrated. The MOS-HEMT not only has the advantages of the MOS structure but also has the 2DEG channel.
    The LPCEO-grown oxide film on AlGaAs is identified to mainly consist of mixtures of Ga2O3, As2O3, and Al2O3 by means of AES, XPS, and Raman spectroscopy. Moreover, the XPS signals of the Al-2p core level indicate that Al and Al oxides on the oxide surface are weak for long periods of oxidation time due to the strong pH-dependent solubility of Al2O3. In addition, the electrical properties of the oxide film have been measured by dc transport and capacitance techniques, and can be improved after rapid thermal annealing. The AlGaAs/InGaAs MOS-PHEMT has a larger gate voltage swing, a lower gate leakage current, a higher breakdown voltage, and an improved rf performance than those of the conventional PHEMT, making the proposed liquid phase oxidation suitable for high-power and high-speed applications.
    The LPCEO-grown oxide film on InGaAs is identified to mainly consist of mixtures of Ga2O3, As2O3, and In2O3. On the other hand, the LPCEO-grown oxide film on InAlAs is identified to mainly consist of mixtures of As2O3, Al2O3, and In2O3. As compared to the conventional MHEMT, larger gate voltages, higher breakdown voltages, lower gate leakage currents with the suppressed impact ionization effect, and improved rf performance for the InAlAs/InGaAs MOS-MHEMT make the proposed liquid-phase oxidation suitable for device applications.
    The LPCEO-grown oxide film on InGaP is identified to mainly consist of mixtures of Ga2O3 and InPO4. Although liquid phase oxidation on the InGaP material has a much slower oxidation rate of less than 10 nm/hr as compared to that of the GaAs material, it is still feasible to grow a thin oxide film. As compared to the counterpart of the conventional PHEMT, the proposed MOS-PHEMT can further reduce the gate leakage current, increase the breakdown voltage, and enhance the gate voltage swing. In addition, the pulse transient measurement shows a much lesser impact of the surface trap effects on the InGaP/InGaAs MOS-PHEMT owing to oxide passivation.
    In other words, the investigation of the proposed low-cost, low-temperature LPCEO technique can provide a useful and potential method for GaAs-based electronic device applications.

    Table of Contents Abstract I Table of Contents V Table Captions IX Figure Captions X Chapter 1 Introduction 1 1.1 Background and motivations 1 1.2 Liquid phase chemical-enhanced oxidation (LPCEO) 7 1.3 Organization 10 Chapter 2 Liquid phase oxidation on AlGaAs and its applications 15 2.1 Introduction 15 2.2 Characterization of the oxide film 16 2.2.1 Physical properties 17 2.2.2 Chemical properties 21 2.2.3 Electrical properties 31 2.3 Oxidation kinetics 32 2.4 Selective oxidation 38 2.5 Wet chemical etching of the oxide 42 2.6 Bi-layer submicron photolithography 45 2.7 AlGaAs/InGaAs MOS-PHEMT 46 2.7.1 Device fabrication 46 2.7.2 Experimental results 50 2.7.3 Microwave and noise performance 55 2.8 AlGaAs/InGaAs E-mode MOS-PHEMT 60 2.8.1 Device fabrication 61 2.8.2 Experimental results 63 2.9 Summary 65 Chapter 3 Liquid phase oxidation on InGaAs and its applications 67 3.1 Introduction 67 3.2 Characterization of the oxide film 69 3.2.1 Physical properties 69 3.2.2 Chemical properties 72 3.2.3 Electrical properties 80 3.3 Oxidation kinetics 80 3.4 Selective oxidation 86 3.5 Wet chemical etching of the oxide 89 3.6 InAlAs/InGaAs MOS-MHEMT 90 3.6.1 Device fabrication 90 3.6.2 Experimental results 93 3.6.3 Impact ionization effect 98 3.6.4 Microwave and noise performance 101 3.6.5 Liquid phase oxidized InAlAs 105 3.7 Summary 109 Chapter 4 Liquid phase oxidation on InGaP and its applications 110 4.1 Introduction 110 4.2 Characterization of the oxide film 111 4.3 InGaP/InGaAs MOS-PHEMT 117 4.3.1 Device fabrication 117 4.3.2 Experimental results 118 4.4 Summary 126 Chapter 5 Conclusions and future works 127 5.1 Conclusions 127 5.2 Future works 128 References 130 Publication List 148 Curriculum Vitae 150

    [1] H. Kinoshita, Y. Sano, T. Ishida, S. Nishi, M. Akiyama and K. Kaminishi, “A new insulated-gate inverted-structure modulation-doped AlGaAs/GaAs/ N-AlGaAs field-effect transistor,” Jpn. J. Appl. Phys., vol. 43, p. L836-L838, 1984.
    [2] S. Fujita, M. Hirano, and T. Mizutani, “Small-signal characteristics of n+-Ge gate AlGaAs/GaAs MISFET’s,” IEEE Electron Device Lett., vol. 9, p. 518-520, 1988.
    [3] H. T. Minden, “Thermal oxidation of GaAs,” J. Electrochem. Soc., vol. 109, p. 733, 1962.
    [4] B. E. Deal and M. Sklar, “Thermal oxidation of heavily doped silicon,” J. Electrochem. Soc., vol. 112, p. 430, 1965.
    [5] S. P. Murarka, “Thermal oxidation of GaAs,” Appl. Phys. Lett., vol. 26, pp. 180-181, 1975.
    [6] D. N. Butcher and B. J. Sealy, “Electrical properties of thermal oxides on GaAs,” Electron. Lett., vol. 13, pp. 558-559, 1977.
    [7] I. Shiota, N. Miyamoto, and J. Nishizawa, “Auger analysis of thermally oxidized GaAs surfaces,” J. Electrochem. Soc., vol. 124, pp.1405-1409, 1977.
    [8] B. E. Deal, “Thermal oxidation kinetics of silicon in pyrogenic H2O and 5% HCl/H2O mixtures,” J. Electrochem. Soc., vol. 125, p. 576, 1978.
    [9] C. P. Ho, J. D. Plummer, J. D. Meindl, and B. E. Deal, “Thermal oxidation of heavily phosphorus doped silicon,” J. Electrochem. Soc., vol. 125, p. 665, 1978.
    [10] H. Takagi, G. Kano, and I. Teramoto, “Thermal oxidation of GaAs in arsenic trioxide vapor,” J. Electrochem. Soc., vol. 125, pp. 579-581, 1978.
    [11] D. N. Butcher and B. J. Sealy, “The thermal oxidation of GaAs,” J. Phys. D: Appl. Phys., vol. 11, pp. 1451-1456, 1978.
    [12] I. Teramoto, H. Takagi, and G. Kano, “Vapor phase equilibria of arsenic-trioxide over gallium arsenide,” Jpn. J. Appl. Phys., vol. 18, pp. 723-728, 1979.
    [13] K. Maezawa, T. Mizutani, K. Arai, and F. Yanagawa, “Large transconductance n+-Ge gate AlGaAs/GaAs MISFET with thin gate insulator,” IEEE Electron Device Lett., vol. EDL-7, pp. 454-456, 1986.
    [14] S. Fujita, M. Hirano, K. Maezawa, and T. Mizutani, “A high-speed frequency divider using n+-Ge gate AlGaAs/GaAs MISFET’s,” IEEE Electron Device Lett., vol. EDL-8, pp. 226-227, 1987.
    [15] N. Basu and K. N. Bhat, “High-pressure thermal oxidation of n-GaAs in an atmosphere of oxygen and water vapor,” J. Appl. Phys., vol. 63, pp. 5500-5506, 1988.
    [16] T. H. Oh, D. L. Huffaker, L. A. Graham, H. Deng, and D. G. Deppe, “Steam oxidation of GaAs,” Electron. Lett., vol. 32, pp. 2024-2026, 1996.
    [17] K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Selected Topic in Quantum Electron., vol. 3, pp. 916-926, 1997.
    [18] E. F. Yu, J. Shen, M. Walther, T. C. Lee, and R. Zhang, “Planar GaAs MOSFET using wet thermally oxidised AlGaAs as gate insulator,” Electronics Lett., vol. 36, pp. 359-361, 2000.
    [19] H. Hasegawa, K. E. Forward, and H. L. Hartnagel, “New anodic native oxide of GaAs with improved dielectric and interface properties,” Appl. Phys. Lett., vol. 26, pp. 567-569, 1975.
    [20] H. Hasegawa and H. L. Hartnagel, “Anodic oxidation of GaAs in mixed solutions of glycol and water,” J. Electrochem. Soc., vol. 123, pp. 713-723, 1976.
    [21] D. J. Coleman, D. W. Shaw, and R. D. Dobrott, “On the mechanism of GaAs anodization,” J. Electrochem. Soc., vol. 124, pp. 239-241, 1977.
    [22] G. P. Schwartz, J. E. Griffiths, and B. Schwartz, “Interfacial reactions on anodized GaAs,” J. Vac. Sci. Technol., vol. 16, pp. 1383-1386, 1979.
    [23] G. P. Schwartz, G. J. Gualtieri, J. E. Griffiths, C. D. Thurmond, and B. Schwartz, “Oxide-substrate and oxide-oxide chemical reactions in thermally annealed anodic films on GaSb, GaAs, GaP,” J. Electrochem. Soc., vol. 127, p. 2488, 1980.
    [24] M. J. Jeng and J. G. Hwu, “Thin-gate oxides prepared by pure water anodization followed by rapid thermal densification,” IEEE Electron Device Lett., vol. 17, pp. 575-577, 1996.
    [25] P. Schmuki, G. I. Sproule, J. A. Bardwell, Z. H. Lu, and M. J. Graham, “Thin anodic oxides formed on GaAs in aqueous solutions,” J. Appl. Phys., vol. 79, pp. 7303-7311, 1996.
    [26] P. A. Bertrand, “The photochemical oxidation of GaAs,” J. Electrochem. Soc., vol. 132, pp. 973-976, 1985.
    [27] S. D. Offsey, J. M. Woodall, A. C. Warren, D. Kirchner, T. I. Chappell, and G. D. Pettit, “Unpinned (100) GaAs surfaces in air using photochemistry,” Appl. Phys. Lett., vol. 48, pp. 475-477, 1986.
    [28] T. Sawada, H. Hasegawa, and H. Ohno, “Electronic properties of a photochemical oxide-GaAs interface,” Jpn. J. Appl. Phys., vol. 26, pp. L1871-L1873, 1987.
    [29] C. W. Wilmsen, P. D. Kirchner, J. M. Baker, D. T. Mclnturff, G. D. Pettit, and J. M. Woodall, “Characterization of photochemically unpinned GaAs,” J. Vac. Sci. Technol. B, vol. 6, pp. 1180-1183, 1988.
    [30] P. D. Kirchner, A. C. Warren, J. M. Woodall, C. W. Wilmsen, S. L. Wright, and J. M. Baker, “Oxide passivation of photochemically unpinned GaAs,” J. Electrochem. Soc., vol. 135, pp. 1822-1824, 1988.
    [31] Z. Liliental-Weber, C. W. Wilmsen, K. M. Geib, P. D. Kirchner, J. M. Baker, and J. M. Woodall, “Structure and chemical composition of water-grown oxide of GaAs,” J. Appl. Phys., vol. 67, pp. 1863-1867, 1990.
    [32] E. Ettedgui, K. T. Park, J. Cao, Y. Gao, and M. W. Ruckman, “Growth of a Cr oxide layer on GaAs(100) by oxidation with condensed water,” J. Appl. Phys., vol. 73, pp. 1781-1787, 1993.
    [33] E. Ettedgui, K. T. Park, J. Cao, Y. Gao, and M. W. Ruckman, “Photon-assisted oxidation of the GaAs(100) surface using water at 90 K,” J. Appl. Phys., vol. 77, pp. 5411-5417, 1995.
    [34] T. Sugano, “Oxidation of GaAs1-xPx surface by oxygen plasma and properties of oxide film,” J. Electrochem. Soc., vol. 121, pp. 113-118, 1974.
    [35] C. R. Liu and L. Liu, “Measurement and analysis of the infrared absorption band for plasma anodized film on GaAs(100),” J. Phys. D: Appl. Phys., vol. 21, pp. 799-803, 1988.
    [36] W. A. Loong and H. L. Chang, “Oxidation of GaAs surface by oxygen plasma and its application as an antireflection layer,” Jpn. J. Appl. Phys., vol. 30, pp. L1319-L1320, 1991.
    [37] R. Nakamura and H. Ikoma, “Magnetically excited plasma oxidation of GaAs,” Jpn. J. Appl. Phys., vol. 35, pp. L8-L11, 1996.
    [38] M. Passlack, M. Hong, E. F. Schubert, J. R. Kwo, J. P. Mannaerts, S. N. G. Chu, N. Moriya, and F. A. Thiel, “In situ fabricated Ga2O3-GaAs structures with low interface recombination velocity,” Appl. Phys. Lett., vol. 66, pp. 625-627, 1995.
    [39] M. Passlack, M. Hong, and J. P. Mannaerts, “Quasistatic and high frequency capacitance-voltage characterization of Ga2O3-GaAs structures fabricated by in situ molecular beam epitaxy,” Appl. Phys. Lett., vol. 68, pp. 1099-1101, 1996.
    [40] M. Passlack, M. Hong, J. P. Mannaerts, R. L. Opila, S. N. G. Chu, N. Moriya, F. Ren, and J. R. Kwo, “Low Dit, thermodynamically stable Ga2O3-GaAs interfaces: fabrication, characterization, and modeling,” IEEE Trans. Electron Devices, vol. 44, pp. 214-225, 1997.
    [41] F. Ren, J. M. Kuo, M. Hong, W. S. Hobson, J. R. Lothian, J. Lin, H. S. Tsai, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, “Ga2O3(Gd2O3)/InGaAs enhancement-mode n-channel MOSFET’s,” IEEE Electron Device Lett., vol. 19, pp. 309-311, 1998.
    [42] Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, “Demonstration of submicron depletion-mode GaAs MOSFET’s with negligible drain current drift and hysteresis,” IEEE Electron Device Lett., vol. 20, pp. 457-459, 1999.
    [43] M. Passlack, J. K. Abrokwah, R. Droopad, Z. Yu, C. Overgaard, S. I. Yi, M. Hale, J. Sexton, and A. C. Kummel, “Self-aligned GaAs p-channel enhancement mode MOS heterostructure field-effect transistor,” IEEE Electron Device Lett., vol. 23, pp. 508-510, 2002.
    [44] H. C. Lin, S. Senanayake, K. Y. Cheng, M. Hong, J. R. Kwo, B. Yang, and J. P. Mannaerts, “Optimization of AuGe-Ni-Au ohmic contacts for GaAs MOSFETs,” IEEE Trans. Electron Devices, vol. 50, pp. 880-885, 2003.
    [45] P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, “GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition,” IEEE Electron Device Lett., vol. 24, pp. 209-211, 2003.
    [46] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, “Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition,” Appl. Phys. Lett., vol. 84, pp. 434-436, 2004.
    [47] P. D. Ye, G. D. Wilk, B. Yang, S. N. G. Chu, K. K. Ng, and J. Bude, “Improvement of GaAs metal-semiconductor field-effect transistor drain-source breakdown voltage by oxide surface passivation grown by atomic layer deposition,” Solid-State Electron., vol. 49, pp. 790-794, 2005.
    [48] R. Driad, Z. H. Lu, S. Laframboise, D. Scansen, W. R. Mckinnon, and S. P. Mcalister, “Reduction of surface recombination in InGaAs/InP heterostructures using UV-irradiation and ozone,” Jpn. J. Appl. Phys., vol. 38, pp. 1124-1127, 1999.
    [49] T. Tanimoto, I. Ohbu, H. Ohta, and S. Takatani, “Reduction of Schottky reverse leakage current using GaAs surface cleaning with UVO3 treatment,” Jpn. J. Appl. Phys., vol. 38, pp. 3982-3985, 1999.
    [50] T. Sugimura, Ttsuzuku, T. Katsui, Y. Kasai, T. Inokuma, S. Hashimoto, K. Iiyama, and S. Takamiya, “A preliminary study of MIS diodes with nm-thin GaAs-oxide layers,” Solid-State Electron., vol. 43, pp. 1571-1576, 1999.
    [51] K. Iiyama, Y. Kita, Y. Ohta, M. Nasuno, S. Takamiya, K. Higashimine, and N. Ohtsuka, “Fabrication of GaAs MISFET with nm-thin oxidized layer formed by UV and ozone process,” IEEE Trans. Electron Devices, vol. 49, pp. 1856-1862,, 2002.
    [52] N. C. Paul, K. Nakamura, M. Takebe, A. Takemoto, T. Inokuma, K. Iiyama, S. Takamiya, K. Higashimine, N. Ohtsuka, and Y. Yonezawa, “Structural and electrical characterization of oxidated, nitridated and oxi-nitridated (100) GaAs surfaces,” Jpn. J. Appl. Phys., vol. 42, pp. 4264-4272, 2003.
    [53] M. Takebe, K. Nakamura, N. C. Paul, K. Iiyama, and S. Takamiya, “GaAs-MISFETs with insulating gate films formed by direct oxidation and by oxinitridation of recessed GaAs surfaces,” IEEE Trans. Electron Devices, vol. 51, pp. 311-316, 2004.
    [54] N. C. Paul, K. Nakamura, H. Seto, K. Iiyama, and S. Takamiya, “Oxidation of InAlAs and its application to gate insulator of InAlAs/InGaAs metal oxide semiconductor high electron mobility transistor,” Jpn. J. Appl. Phys., vol. 44, pp. 1174-1180, 2005.
    [55] M. P. Houng, C. J. Huang, Y. H. Wang, N. F. Wang, and W. J. Chang, “Extremely low temperature formation of silicon dioxide on gallium arsenide,” J. Appl. Phys., vol. 82, pp. 5788-5792, 1997.
    [56] C. J. Huang, M. P. Houng, Y. H. Wang, and H. H. Wang, “Effect of a chemical modification on growth silicon dioxide films on gallium arsenide prepared by the liquid phase deposition method,” J. Appl. Phys., vol. 86, pp. 7151-7155, 1999.
    [57] C. J. Huang, J. R. Chen, and S. P. Huang, “Silicon dioxide passivation of gallium arsenide by liquid phase deposition,” Materials Chemistry and Physics, vol. 70, pp. 78-83, 2001.
    [58] C. J. Huang, “Proper annealing for enhanced quality of silicon dioxide thin film on gallium arsenide,” Electrochem. and Solid-State Lett., vol. 4, pp. F21-F23, 2001.
    [59] C. J. Huang, Z. S. Ya, J. H. Horng, M. P. Houng, and Y. H. Wang, “GaAs metal-oxide-semiconductor field effect transistors fabricated with low- temperature liquid-phase-deposited SiO2,” Jpn. J. Appl. Phys., vol. 41, pp. 5561-5562, 2002.
    [60] S. K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, John Wiley & Sons, New York, 1994.
    [61] D. J. Coleman, D. W. Shaw, and R. D. Dobrott, “On the mechanism of GaAs anodization,” J. Electrochem. Soc., vol. 124, pp. 239-241, 1977.
    [62] H. H. Wang, C. J. Huang, Y. H. Wang, and M. P. Houng, “Liquid phase chemical-enhanced oxidation for GaAs operated near room temperature,” Jpn. J. Appl. Phys., vol. 37, pp. L67-L70, 1998.
    [63] H. H. Wang, Y. H. Wang, and M. P. Houng, “Near-room-temperature selective oxidation on GaAs using photoresist as a mask,” Jpn. J. Appl. Phys., vol. 37, pp. L988-L990, 1998.
    [64] H. H. Wang, D. W. Chou, Y. H. Wang, and M. P. Houng, “Properties of GaAs oxides prepared by liquid phase chemical enhanced technique,” Physica Scipta, vol. T79, pp. 239-242, 1999.
    [65] H. H. Wang, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Effects of pH values on the kinetics of liquid phase chemical enhanced oxidation of GaAs,” J. Electrochem. Soc., vol. 146, pp. 2328-2332, 1999.
    [66] H. H. Wang, D. W. Chou, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Effect of crystal orientation and doping on the activation energy for GaAs oxide growth by liquid phase method,” J. Appl. Phys., vol. 87, pp. 2629-2633, 2000.
    [67] H. H. Wang, D. W. Chou, J. Y. Wu, Y. H. Wang and M. P. Houng, “Surface oxidation kinetics of GaAs oxide growth by liquid phase chemical-enhanced technique,” Jpn. J. Appl. Phys., vol. 39, pp. 4477-4480, 2000.
    [68] H. H. Wang, “Investigation of Liquid Phase Chemical-Enhanced Oxidation Technique for GaAs and Its Application,” Ph.D. dissertation, National Cheng-Kung University, Taiwan, Republic of China, 2000.
    [69] J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “A GaAs MOSFET with a liquid phase oxidized gate,” IEEE Electron Device Lett., vol. 20, pp. 18-20, 1999.
    [70] J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “GaAs MOSFET’s fabrication with a liquid phase oxidized gate,” IEEE Trans. Electron Devices, vol. 48, pp. 634-637, 2001.
    [71] J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “Fabrication of depletion-mode GaAs MOSFET’s with a selective oxidation process by using metal as the mask,” IEEE Electron Device Lett., vol. 22, pp. 2-4, 2001.
    [72] J. Y. Wu, P. W. Sze, Y. M. Deng, G. W. Huang, Y. H. Wang, and M. P. Houng, “Properties of GaAs MOSFET with gate dielectric grown by liquid-phase selective oxidation method,” Solid-State Electron., vol. 45, pp. 635-638, 2001.
    [73] J. Y. Wu, P. W. Sze, Y. H. Wang, and M. P. Houng, “Temperature effect on gate leakage currents in gate dielectric films of GaAs MOSFET,” Solid-State Electron., vol. 45, pp. 1999-2003, 2001.
    [74] J. Y. Wu, H. H. Wang, P. W. Sze, Y. H. Wang, and M. P. Houng, “A planarized shallow-trench-isolation for GaAs devices fabrication using liquid phase chemical enhanced oxidation process,” IEEE Electron Device Lett., vol. 23, pp. 237-239, 2002.
    [75] J. Y. Wu, “Investigation and Application of Liquid Phase Chemical-Enhanced Oxidation Technique on GaAs MOSFET’s,” Ph.D. dissertation, National Cheng-Kung University, Taiwan, Republic of China, 2001.
    [76] D. W. Chou, R. F. Lou, H. H. Wang, Y. H. Wang, and M. P. Houng, “Properties of the GaAs oxide layer grown by the liquid-phase chemical-enhanced technique on the S-passivated GaAs surface,” J. Electronic Materials, vol. 31, pp. 71-75, 2002.
    [77] D. W. Chou, H. H. Wang, Y. H. Wang, and M. P. Houng, “Electrical properties of GaAs metal-oxide-semiconductor structures with the oxide layer grown by liquid phase chemical-enhanced method,” Materials Chemistry and Physics, vol. 78, pp. 772-777, 2003.
    [78] D. W. Chou, L. T. Wang, H. H. Wang, Y. H. Wang, and M. P. Houng, “Influence of annealing ambient on GaAs oxide prepared by the liquid phase method,” Solid-State Electron., vol. 48, pp. 2175-2179, 2004.
    [79] D. W. Chou, “Study of Pre-treatment and Post-oxidation Annealing Effect on the GaAs Native Oxide Prepared by the Liquid Phase Oxidation Method,” Ph.D. dissertation, National Cheng-Kung University, Taiwan, Republic of China, 2004.
    [80] C. C. Wang, H. K. Huang, Y. H. Wang, M. P. Houng, C. L. Wu, and C. S. Chang, “Fabrication of GaAs Schottky diode by liquid phase chemical enhanced oxidation,” Solid-State Electron., vol. 48, pp. 1683-1686, 2004.
    [81] K. W. Lee, Y. H. Wang, and M. P. Houng, “Liquid phase chemical enhanced oxidation on AlGaAs and its application,” Jpn. J. Appl. Phys., vol. 43, pp. 4087-4091, 2004.
    [82] K. W. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “AlGaAs/InGaAs metal-oxide-semiconductor pseudomorphic high-electron-mobility transistor with a liquid phase oxidized AlGaAs as gate dielectric,” Solid-State Electron., vol. 49, pp. 213-217, 2005.
    [83] K. W. Lee, P. W. Sze, Y. J. Lin, N. Y. Yang, M. P. Houng, and Y. H. Wang, “InGaP/InGaAs metal-oxide-semiconductor pseudomorphic high-electron- mobility transistor with a liquid-phase-oxidized InGaP as gate dielectric,” IEEE Electron Device Lett., vol. 26, pp. 864-866, 2005.
    [84] K. W. Lee, P. W. Sze, N. Y. Yang, M. P. Houng and Y. H. Wang, “Improved breakdown voltage and impact ionization in InAlAs/InGaAs metamorphic high-electron-mobility transistor with a liquid phase oxidized InGaAs gate,” Applied Physics Lett., vol. 87, pp. 263501-1-263501-3, 2005.
    [85] H. Kinoshita, Y. Sano, T. Ishida, S. Nishi, M. Akiyama, and K. Kaminishi, “A new insulated-gate inverted-structure modulation-doped AlGaAs/GaAs/ N-AlGaAs field-effect transistor,” Jpn. J. Appl. Phys., vol. 23, pp. L836-L838, 1984.
    [86] M. Hirano, S. Fujita, K. Maezawa, and T. Mizutani, “Submicrometer n+-Ge gate AlGaAs/GaAs MISFET’s,” IEEE Trans. Electron Devices, vol. 36, pp. 2217-2222, 1989.
    [87] W. S. Lour, “Comparison of GaAs, InGaAs, and GaAs/InGaAs doped channel field-effect transistors with AlGaAs insulator gate,” Jpn. J. Appl. Phys., vol. 35, pp. 5991-5994, 1996.
    [88] S. Takatani, H. Matsumoto, J. Shigeta, K. Ohshika, T. Yamashita, and M. Fukui, “Generation mechanism of gate leakage current due to reverse-voltage stress in i-AlGaAs/n-GaAs HIGFET’s,” IEEE Trans. Electron Devices, vol. 45, pp. 14-20, 1998.
    [89] E. I. Chen, N. Holonyak, Jr., and S. A. Maranowski, “AlxGa1-xAs-GaAs metal-oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs,” Appl. Phys. Lett., vol. 66, pp. 2688-2690, 1995.
    [90] P. A. Parikh, S. S. Shi, J. Ibettson, E. L. Hu, and U. K. Mishra, “Hydrogenation of GaAs MISFETs with Al2O3 as the gate insulator,” Electron. Lett., vol. 32, pp. 1724-1726, 1996.
    [91] C. B. DeMelo, D. C. Hall, G. L. Snider, D. Xu, G. Kramer, and N. El-Zein, “High electron mobility InGaAs-GaAs field effect transistor with thermally oxidized AlAs gate insulator,” Electron. Lett., vol. 36, pp. 84-86, 2000.
    [92] B. K. Jun, D. H. Kim, J. Y. Leem, J. H. Lee, and Y. H. Lee, “Fabrication of depletion mode GaAs MOSFET using Al2O3 as a gate insulator through the selective wet oxidation of AlAs,” Thin Solid Films, vol. 360, pp. 229-232, 2000.
    [93] Y. S. Lee, Y. H. Lee, and J. H. Lee, “Wet oxidation of AlAs grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 65, pp. 2717-2719, 1994.
    [94] T. Langenfelder, St. Schröder, and H. Grothe, “Lateral oxidation of buried AlxGa1-xAs layers in a wet ambient,” J. Appl. Phys., vol. 82, pp. 3548-3551, 1997.
    [95] J. Yu, Y. Aoyagi, S. Iwai, K. Toyoda, and S. Namba, “Anodic oxidation of AlxGa1-xAs,” J. Appl. Phys., vol. 56, pp. 1895-1896, 1984.
    [96] C. W. Fischer and S. W. Teare, “Anodic oxidation of AlGaAs and detection of the AlGaAs-GaAs heterojunction interface,” J. Appl. Phys., vol. 67, pp. 2608-2612, 1990.
    [97] R. P. H. Chang, C. C. Chang, J. J. Coleman, R. L. Kauffman, W. R. Wagner, and L. C. Feldman, “Physical and electrical properties of plasma-grown oxide on Ga0.64Al0.36As,” J. Appl. Phys., vol. 48, pp. 5384-5386, 1977.
    [98] Z. R. Wasilewski, M. M. Dion, D. J. Lockwood, P. Poole, R. W. Streater, and A. J. Spring Thorpe, ”Composition of AlGaAs,” J. Appl. Phys., vol. 81, pp. 1683-1694, 1997.
    [99] Z. Pan, Y. Zhang, Y. Du, H. X. Han, and R. H. Wu, “Stress measurements in oxidized GaAs/AlAs structures by micro-Raman spectroscopy,” Lasers and Electro-Optics Society (LEOS), Dec. 1-4, 1998, pp. 242-243.
    [100] C. I. H. Ashby, J. P. Sullivan, P. P. Newcomer, N. A. Missert, H. Q. Hou, B. E. Hammons, M. J. Hafich, and A. G. Baca, ”Wet oxidation of AlxGa1-xAs: temporal evolution of composition and microstructure and the implications for metal-insulator-semiconductor applications,” Appl. Phys. Lett., vol. 70, pp. 2443-2445, 1997.
    [101] C. I. H. Ashby, J. P. Sullivan, K. D. Choquette, K. M. Geib, H. Q. Hou, “Wet oxidation of AlGaAs: the role of hydrogen,” J. Appl. Phys., vol. 82, pp. 3134-3136, 1997.
    [102] C. I. H. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, and H. Q. Hou, “Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett., vol. 75, pp. 73-75, 1999.
    [103] L. M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid-State Electron., vol. 5, pp. 285-299, 1962.
    [104] H. J. Yoon, M. H. Choi, and I. S. Park, “The study of native oxide on chemically etched GaAs (100) surfaces,” J. Electrochem. Soc., vol. 139, pp. 3229-3234, 1992.
    [105] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field transistor,” IEEE Electron Device Lett., vol. 21, pp. 63-65, 2000.
    [106] D. W. Chou, K. W. Lee, J. J. Huang, P. W. Sze, H. R. Wu, Y. H. Wang, M. P. Houng, S. J. Chang, and Y. K. Su, “AlGaN/GaN metal oxide semiconductor heterostructure field-effect transistor based on a liquid phase deposited oxide,” Jpn. J. Appl. Phys., vol. 41, pp. L748-L750, 2002.
    [107] J. W. Lee, I. H. Kang, S. J. Kang, S. J. Jo, S. K. In, H. J. Song, and J. I. Song, “In0.5Ga0.5P/In0.22Ga0.78As pseudomorphic high electron mobility transistors with an oxidized GaAs gate for improved breakdown voltage characteristics,” Solid-State Electron., vol. 47, pp. 223-228, 2003.
    [108] Y. Takanashi, M. Hirano, and T. Sugeta, “Control of threshold voltage of AlGaAs/GaAs 2DEG FET’s through heat treatment,” IEEE Electron Device Lett., vol. EDL-5, pp. 241-243, 1984.
    [109] J. A. Del Alamo and T. Mizutani, “A self-aligned enhancement-mode AlGaAs/InP MISFET,” IEEE Electron Device Lett., vol. EDL-8, pp. 220-222, 1987.
    [110] K. Ohmuro, H. I. Fujishiro, M. Itoh, H. Nakamura, and S. Nishi, “Enhancement-mode pseudomorphic inverted HEMT for low noise amplifier,” IEEE Trans. Microw. Theory Tech., vol. 39, pp. 1995-2000, 1991.
    [111] Y. Okamoto, K. Matsunaga, and M. Kuzuhara, “Enhancement-mode buried gate InGaP/AlGaAs/InGaAs heterojunction FETs fabricated by selective wet etching,” Electron. Lett., vol. 31, pp. 2216-2218, 1995.
    [112] K. J. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoto, “High-performance InP-based enhancement-mode HEMT’s using non-alloyed ohmic contacts and Pt-based buried-gate technologies,” IEEE Trans. Electron Devices, vol. 43, pp. 252-257, 1996.
    [113] A. Mahajan, M. Arafa, P. Fay, C. Caneau, and I. Adesida, “Enhancement-mode high electron mobility transistors (E-HEMT’s) lattice-matched to InP,” IEEE Trans. Electron Devices, vol. 45, pp. 2422-2429, 1998.
    [114] K. Eisenbeiser, R. Droopad, and J. H. Huang, “Metamorphic InAlAs/InGaAs enhancement mode HEMT’s on GaAs substrates,” IEEE Electron Device Lett., vol. 20, pp. 507-509, 1999.
    [115] J. P. Ao, Q. M. Zeng, Y. L. Zhao, X. J. Li, W. J. Liu, S. Y. Liu, and C. G. Liang, “InP-based enhancement-mode pseudomorphic HEMT with strained In0.45Al0.55As barrier and In0.75Ga0.25As channel layers,” IEEE Electron Device Lett., vol. 21, pp. 200-202, 2000.
    [116] M. Boudrissa, E. Delos, C. Gaquiere, M. Rousseau, Y. Cordier, D. Theron, and J. C. De Jaeger, “Enhancement-mode Al0.66In0.34As/Ga0.67In0.33As metamorphic HEMT: modeling and measurements,” IEEE Trans. Electron Devices, vol. 48, pp. 1037-1044, 2001.
    [117] R. Grundbacher, R. Lai, M. Barsky, R. Tsai, R. Dia, Y. C. Chou, L. Tran, A. Cavus, T. Block, and A. Oki, “Enhancement-mode InGaAs/InAlAs/InP high electron mobility transistor with 0.1 μm gate,” Jpn. J. Appl. Phys., vol. 41, pp. 1108-1110, 2002.
    [118] D. C. Dumka, H. Q. Tserng, M. Y. Kao, E. A. Beam III, and P. Saunier, “High-performance double-recessed enhancement-mode metamorphic HEMTs on 4-in GaAs substrates,” IEEE Electron Device Lett., vol. 24, pp. 135-137, 2003.
    [119] L. H. Chu, E. Y. Chang, S. H. Chen, Y. C. Lien, and C. Y. Chang, “2 V-operated InGaP-AlGaAs-InGaAs enhancement-mode pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 26, pp. 53-55, 2005.
    [120] D. M. Gill, B. C. Kane, S. P. Svensson, D. W. Tu, P. N. Uppal, and N. E. Byer, “High-performance, 0.1 μm InAlAs/InGaAs high electron mobility transistors on GaAs,” IEEE Electron Devices Lett., vol. 17, pp. 328-330, 1996.
    [121] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Théron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Devices Lett., vol. 19, pp. 345-347, 1998.
    [122] S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet, and A. Cappy, “Metamorphic In0.4Al0.6As/In0.4Ga0.6As HEMT’s on GaAs substrate,” IEEE Electron Devices Lett., vol. 20, pp. 123-125, 1999.
    [123] M. Zaknoune, M. Ardouin, Y. Cordier, S. Bollaert, B. Bonte, and D. Théron, “60-GHz high power performance In0.35Al0.65As-In0.35Ga0.65As metamorphic HEMTs on GaAs,” IEEE Electron Devices Lett., vol. 24, pp. 724-726, 2003.
    [124] C. K. Lin, J. C. Wu, W. K. Wang, Y. J. Chan, J. S. Wu, Y. C. Pan, C. C. Tsai, and J. T. Lai, “Performance enhancement by the In0.65Ga0.35As pseudomorphic channel on the In0.5Ga0.5As metamorphic buffer layer,” IEEE Trans. Electron Devices, vol. 51, pp. 1214-1217, 2004.
    [125] L. D. Nguyen, A. S. Brown, M. A. Thompson, and L. M. Jelloian, “50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs electron mobility transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2007-2014, 1992.
    [126] D. Xu, H. Heiβ, Kraus, M. Sexl, G. Böhm, G. Tränkle, G. Weimann, and G. Abstreiter, “High-performance double-modulation-doped InAlAs/InGaAs/InAs HEMT’s,” IEEE Electron Devices Lett., vol. 18, pp. 323-326, 1997.
    [127] J. A. del Alamo and M. H. Somerville, “Breakdown in millimeter-wave power InP HEMT’s: a comparison with GaAs PHEMT’s,” IEEE J. Solid-State Circuits, vol. 34, pp. 1204-1211, 1999.
    [128] C. Nguyen and M. Micovic, “The state-of-the-art of GaAs and InP power devices and amplifiers,” IEEE Trans. Electron Devices, vol. 48, pp. 472-478, 2001.
    [129] T. Enoki, K. Arai, A. Kohzen, and Y. Ishii, “Design and characteristics of InGaAs/InP composite-channel HFET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 1413-1418, 1995.
    [130] M. Chertouk, H. Heiss, D. Xu, S. Kraus, W. Klein, G. Böhm, G. Tränkle, and G. Weimann, “Metamorphic InAlAs/InGaAs HEMT’s on GaAs substrates with a novel composite channels design,” IEEE Electron Devices Lett., vol. 17, pp. 273-275, 1996.
    [131] G. Meneghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. Brown, C. Canali, and E. Zanoni, “On-state and off-state breakdown in GaInAs/InP composite-channel HEMT’s with variable GaInAs channel thickness,” IEEE Trans. Electron Devices, vol. 46, pp. 2-9, 1999.
    [132] J. A. del Alamo and T. Mizutani, “An In0.52Al0.48As/n+-In0.53Ga0.47As MISFET with a modulation-doped channel,” IEEE Electron Devices Lett., vol. 10, pp. 394-396, 1989.
    [133] Y. J. Chen, W. C. Hsu, Y. W. Chen, Y. S. Lin, R. T. Hsu, and Y. H. Wu, “InAlAs/InGaAs doped channel heterostructure for high-linearity, high-temperature and high-breakdown operations,” Solid-State Electron, vol. 49, pp. 163-166, 2005.
    [134] D. R. Greenberg, J. A. del Alamo, and R. Bhat, “A recessed-gate InAlAs/n+-InP HFET with an InP etch-stop layer,” IEEE Electron Devices Lett., vol. 13, pp. 137-139, 1992.
    [135] A. M. Küsters and K. Heime, “Al-free InP-based high electron mobility transistors: design, fabrication and performance,” Solid-State Electron, vol. 41, pp. 1159-1170, 1997.
    [136] K. Schimpf, M. Sommer, M. Horstmann, M. Hollfelder, A. Hart, M. Marso, P. Kordoš, and H. Lüth, “0.1-μm T-gate Al-free InP/InGaAs/InP pHEMT’s for W-band applications using a nitrogen carrier for LP-MOCVD growth,” IEEE Electron Devices Lett., vol. 18, pp. 144-146, 1997.
    [137] K. Ouchi, T. Mishima, M. Kudo and H. Ohta, “Gas-source molecular beam epitaxy growth of metamorphic InP/In0.5Al0.5As/In0.5Ga0.5As/InAsP high- electron-mobility structures on GaAs substrates,” Jpn. J. Appl. Phys., vol. 41, pp. 1004-1007, 2002.
    [138] S. Fujita, T. Noda, C. Nozaki, and Y. Ashizawa, “InGaP/InAlAs HEMT with a strained InGaP Schottky contact layer,” IEEE Electron Devices Lett., vol. 14, pp. 259-261, 1993.
    [139] H. H. Wieder, A. R. Clawson, D. I. Elder, and D. A. Collins, “Inversion-mode insulated gate Ga0.47In0.53As field-effect transistors,” IEEE Electron Device Lett., vol. EDL-2, pp. 73-75, 1981.
    [140] A. S. H. Liao, B. Tell, R. F. Leheny, and T. Y. Chang, “In0.53Ga0.47As n-channel native oxide inversion mode field-effect transistor,” Appl. Phys. Lett., vol. 41, pp. 280-281, 1982.
    [141] P. D. Gardner, S. Y. Narayan, and Y. H. Yun, “Characterization of the low-temperature deposited SiO2-GaInAs metal/insulator/semiconductor interface,” Thin Solid Films, vol. 117, pp. 173-190, 1984.
    [142] M. Renaud, P. Boher, J. Schneider, J. Barrier, M. Heyen, and D. Schmitz, “Ga0.47In0.53As depletion mode MISFET’s with negligible drain current drift,” Electron. Lett., vol. 24, pp. 750-752, 1988.
    [143] H. Hasegawa, M. Akazawa, K. Matsuzaki, H. Ishii, and H. Ohno, “GaAs and In0.53Ga0.47As MIS structures having an ultrathin pseudomorphic interface control layer of Si prepared by MBE,” Jpn. J. Appl. Phys., vol. 27, pp. L2265-L2267, 1988.
    [144] J. Splettstösser and H. Beneking, “Ga0.47In0.53As enhancement- and depletion- mode MISFET’s with very high transconductance,” IEEE Trans. Electron Devices, vol. 36, pp. 763-764, 1989.
    [145] D. S. L. Mui, Z. Wang, D. Biswas, A. L. Demirel, N. Teraguchi, J. Reed, and H. Morko, “Si3N4/Si/In0.53Ga0.47As depletion-mode metal-insulator-semiconductor field-effect transistors with improved stability,” Appl. Phys. Lett., vol. 62, pp. 3291-3293, 1993.
    [146] S. Suzuki, S. Kodama, and H. Hasegawa, “A novel passivation technology of InGaAs surfaces using Si interface control layer and its application to field effect transistor,” Solid-State Electron, vol. 38, pp. 1679-1683, 1995.
    [147] Y. G. Xie, S. Kasai, H. Takahashi, C. Jiang, and H. Hasegawa, “A novel InGaAs/InAlAs insulated gate pseudomorphic HEMT with a silicon interface control layer showing high dc- and rf-performance,” IEEE Electron Device Lett., vol. 22, pp. 312-314, 2001.
    [148] K. W. Lee, N. Y. Yang, P. W. Sze, M. P. Houng and Y. H. Wang, “Characterization of InGaAs oxide prepared by liquid phase oxidation,” in Proceedings of International Electron Devices and Materials Symposia (IEDMS), Hsinchu, Taiwan, Dec. 20-23, 2004, pp. 435-437.
    [149] P. A. Grudowski, R. V. Chelakara, and R. D. Dupuis, “An InAlAs/InGaAs metal-oxide-semiconductor field effect transistor using the native oxide of InAlAs as a gate insulation layer,” Appl. Phys. Lett., vol. 69, pp. 388-390, 1996.
    [150] S. R. Bahl, M. H. Leary and J. A. del Alamo, “Mesa-sidewall gate leakage in InAlAs/InGaAs heterostructure field-effect transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2037-2043, 1992.
    [151] M. H. Somerville, J. A. del Alamo, and W. Hoke, “Direct correlation between impact ionization and the kink effect in InAlAs/InGaAs HEMT’s,” IEEE Electron Devices Lett., vol. 17, pp. 473-475, 1996.
    [152] Y. J. Chen, W. C. Hsu, C. S. Lee, T. B. Wang, C. H. Tseng, J. C. Huang, D. H. Huang and C. L. Wu, ”Gate-alloy-related kink effect for metamorphic high-electron-mobility transistors,” Appl. Phys. Lett., vol. 85, pp. 5087-5089, 2004.
    [153] T. Suemitsu, T. Enoki, N. Sano, M. Tomizawa, and Y. Ishii, “An analysis of the kink phenomena in InAlAs/InGaAs HEMT’s using two-dimensional device simulation,” IEEE Trans. Electron Devices, vol. 45, pp. 2390-2399, 1998.
    [154] K. L. Lee, K. W. Lee, M. H. Tsai, P. W. Sze, M. P. Houng and Y. H. Wang, “InAlAs/InGaAs metamorphic high electron mobility transistor with a liquid phase oxidized InAlAs as gate dielectric,” in Proceedings of IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, Dec. 19-21, 2005, pp. 613-616.
    [155] M. Tong, K. Nummila, A. Ketterson, I. Adesida, C. Caneau, and R. Bhat, “InAlAs/InGaAs/InP MODFET's with uniform threshold voltage obtained by selective wet gate recess,” IEEE Electron Device Lett., vol. 13, p. 525-527, 1992.
    [156] M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long, and D. I. Babic, “Determination of valence and conduction-band discontinuities at the (Ga,In) P/GaAs heterojunction by C-V profiling,” J. Appl. Phys., vol. 61, pp. 643-649, 1987.
    [157] R. Menozzi, P. Cova, C. Canali, and F. Fantini, “Breakdown walkout in pseudomorphic HEMT’s,” IEEE Trans. Electron Dev., vol. 43, pp. 543-546, 1996.
    [158] S. Fujita, T. Noda, A. Wagai, C. Nozaki, and Y. Ashizawa, “Novel HEMT structures using a strained InGaP Schottky layer,” in 5th Proc. of Indium Phosphide and Related Materials, Paris, France, April 19-22, 1993, pp. 497-500.
    [159] H. K. Huang, C. S. Wang, Y. H. Wang, C. L. Wu, and C. S. Chang, “Temperature effects of low noise InGaP/InGaAs/GaAs PHEMTs,” Solid-State Electron, vol. 47, pp. 1989-1994, 2003.
    [160] H. K. Huang, C. S. Wang, C. P. Chang, Y. H. Wang, C. L. Wu, and C. S. Chang, “Noise characteristics of InGaP-gated PHEMTs under high current and thermal accelerated stresses,” IEEE Trans. Electron Dev., vol. 52, pp. 1706-1712, 2005.
    [161] Y. S. Lin, S. S. Lu and Y. J. Wang, “High-performance Ga0.51In0.49P/GaAs airbridge gate MISFET’s grown by gas-source MBE,” IEEE Trans. Electron Dev., vol. 44, pp. 921-929, 1997.
    [162] L. W. Laih, S. Y. Cheng, W. C. Wang, P. H. Lin, J. Y. Chen, W. C. Liu, and W. Lin, “High-performance InGaP/InGaAs/GaAs step-compositioned doped- channel field-effect transistor (SCDCFET),” Electron. Lett., vol. 33, pp. 98-99, 1997.
    [163] W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Dev. Lett., vol. 20, pp. 548-550, 1999.
    [164] K. K. Yu, H. M. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Dev., vol. 49, pp. 1687-1693, 2002.
    [165] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Dev., vol. 50, pp. 1717-1723, 2003.
    [166] K. W. Lee, Y. J. Lin, N. Y. Yang, Y. C. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “InGaP/InGaAs/GaAs metal-oxide-semiconductor pseudomorphic high electron mobility transistor with a liquid phase oxidized InGaP gate,” in Proceedings of the 7th IEEE International Conference on Solid-State and Integrated Circuits Technology (ICSICT), Beijing, China, Oct. 18-21, 2004, pp. 2301-2304.
    [167] K. W. Lee, N. Y. Yang, K. L. Lee, P. W. Sze, M. P. Houng, and Y. H. Wang, “Liquid phase oxidation on InGaP and its application to InGaP/GaAs HBTs surface passivation,” in Proceedings of the 17th Indium Phosphide and Related Materials (IPRM), Glasgow, Scotland, UK, May 8-12, 2005, pp. 516-519.
    [168] K. W. Lee, P. W. Sze, K. L. Lee, M. P. Houng, and Y. H. Wang, “InGaP PHEMT with a liquid phase oxidized InGaP as gate dielectric,” in Proceedings of IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, Dec. 19-21, 2005, pp. 609-612.
    [169] G. Hollinger, E. Bergignat, J. Joseph, and Y. Robach, “On the nature of oxides on InP surfaces,” J. Vac. Sci. Technol. A, vol. 3, pp. 2082-2088, 1985.
    [170] T. Hashizume and T. Saitoh, “Natural oxides on air-exposed and chemically treated InGaP surfaces grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 78, pp. 2318-2320, 2001.
    [171] G. Hollinger, J. Joseph, Y. Robach, E. Bergignat, B. Commere, P. Viktorovitch, and M. Froment, “On the chemistry of passivated oxide-InP interfaces,” J. Vac. Sci. Technol. B, vol. 5, pp. 1108-1112, 1987.
    [172] K. Balachander, S. Arulkumaran, T. Egawa, Y. Sano, and K. Baskar, “Demonstration of AlGaN/GaN metal-oxide-semiconductor high-electron- mobility transistors with silicon-oxy-nitride as the gate insulator,” Materials Science and Engineering: B, vol. 119, pp. 36-40, 2005.

    下載圖示 校內:2009-07-31公開
    校外:2009-07-31公開
    QR CODE