簡易檢索 / 詳目顯示

研究生: 洪佑昇
Hung, Yu-Sheng
論文名稱: 「浮蓋板與儲水容器」動力特性之數值分析
Numerical Study on the Dynamical Behavior of Water Tanks with Floating Covering
指導教授: 唐啟釗
Tang, Chii-Jau
丁舜臣
Ting, Shuenn-chern
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 84
中文關鍵詞: 隔間水槽阻尼器貼壁格網有限解析法
外文關鍵詞: Boundary-Fitted Coordinate System, Partitioned Tank Damper, Finite Analytic Method
相關次數: 點閱:167下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隔間水槽阻尼器(Partitioned Tank Damper, PTD)為一矩型容器,容器內部裝有液體,中央設有隔板,隔板之下有開口,液體可經由開口在兩隔間之間交互流動。若將PTD配置於結構之中,可有效減低外力(如地震. 強風等)引起的振動反應。本文著重於研究PTD受一外力作用振動之後,內部液體的流場變化,以及浮板運動與內部壓力的相互關係。
      本文利用模型試驗配合數值模擬以分析PTD內部的流場狀況。試驗部分為將PTD固定於振動台上,以伺服馬達給予一RAMP位移,並同時以CCD(Charge Coupled Device, 電荷耦合元件) 攝影機來拍攝浮版整體運動歷程,並利用影像處理的技巧分析出浮板之上下移動高度及相對旋轉角度。數值計算部分,則依據上述試驗所得資料來模擬計算整體PTD內部的流函數分佈、渦度分佈、速度分佈與壓力分佈。
      數值計算的部分,首先進行了模式的測試。由測試的結果可以發現,雖然有限解析法比有限差分法有較嚴謹的理論基礎,但相對的也需要較多的計算時間與疊代次數。此外,適度的控制格網大小以及收斂精度可避免浪費不必要的計算時間;而在穩定收斂的數值模式下,適度的選用超鬆弛因子可有效的加速計算收斂的速度。
      數值模擬PTD內部流場的結果可以發現,渦度函數較大的位置均發生在靠近浮板下方以及直立邊壁的上方位置。整體來說,渦度函數的分佈並不會對流函數分佈造成太大的影響。

     Partitioned Tank Damper (PTD) is a rectangular reservoir equipped with a partition board in the middle and contains water, when the bottom of partition board opened, the fluid flow oscillates between two side of tanks. PTD equipped in a structural system will suppress the oscillation excited by earthquakes or wind efficiently. This thesis attempts to investigate the behaviors of a PTD by numerical analysis.
     This thesis utilizes PTD model test and numerical simulation to analyze the motion of fluid inside PTD. We set the PTD on the shaking table and use the servo motor to give it ramp displacement, and take pictures by Charge Coupled Device(CCD) camera, so we can utilize the image acquisition software to analyze the elevation and inclination of water surface. Furthermore, we can use the data to calculate the distribution of stream function, vortices, and pressure.
     In the numerical works, first we test the model. The result shows that Finite Analytic Method takes more time and more iterations than Finite Difference Method. Furthermore, choose the grid size and the bound of convergence properly will avoid the waste of time; choose the successive over-relaxation factor correctly will speedup the time of computer calculation.
     The numerical simulation of PTD shows strong vortices occur near water surface and vertical bound. Generally speaking, the distribution of vortices will not affect the distribution of stream function.

    中文摘要               I Abstract               II 謝誌                 III 目錄                 IV 表目錄                VII 圖目錄                VIII 照片目錄               X 符號說明               XI 第一章 緒論              1  1.1 研究動機            2   1.2 文獻回顧             2  1.3 研究方法             4  1.4 本文架構             4 第二章 相關理論            6  2.1 流場控制方程式          6   2.1.1 座標系統           6   2.1.2 運動方程式       8  2.2 初始及邊界條件       11   2.2.1 初始條件           11   2.2.2 流函數邊界條件        11   2.2.3 流函數無滑移條件       12   2.2.4 渦度函數邊界條件       12   2.2.5 壓力邊界條件       14 第三章 試驗研究            16  3.1 試驗設備            16   3.1.1 試驗模型       16   3.1.2 振動產生系統       16   3.1.3 資料量測系統       18  3.2 儀器率定            18  3.3 資料擷取與試驗流程       19   3.3.1 資料擷取       19   3.3.2 試驗流程       20  3.4 影像資料分析       21 第四章 數值分析            23  4.1格網生成            23  4.2 離散方法            24   4.2.1 有限差分法離散方程式   24   4.2.2 有限解析法離散方程式   26   4.2.3 有限差分法求解速度場   29   4.2.4 有限差分法求解壓力   29  4.3 對角矩陣求解           30  4.4 計算流程            32 第五章 結果與討論            34  5.1 模式測試            34  5.1.1 離散方法比較        34  5.1.2 SOR值測試        34  5.1.3 格網分析        35   5.1.4 收斂判斷測試        36  5.2 數值計算結果與討論        37 第六章 結論與建議           39  6.1 結論               39  6.2 建議               40 參考文獻                41

    1.徐德修(1997),“高壓伺服機構之設計及防震功能測試”,行政院國家
     科學委員會專題研究計劃成果報告, NSC87-2211-E-006-045。
    2.張志華(1997)『孤立波與結構物在黏性流體中互制作用之研究』,國立成功大學水利及 海洋工程研究所博士論文。
    3.林威宏(1998) 『含流動流體之阻尼器對結構的減振效應』,國立成功大學水利及海洋工 程研究所碩士論文。
    4.曾申融(2000) 『「浮蓋板與儲容器」動力特性之試驗研究』,國立成功大學水利及海洋 工程研究所碩士論文。
    5.李國彰(2000) 『「孔口式調諧液柱阻尼器」孔口開度對結構減振之效應』,國立成功大 學水利及海洋工程研究所碩士論文。
    6.黃勝弘(2002) 『「隔間容器阻尼器」動力特性之試驗研究』,國立成功大學水利及海洋 工程研究所碩士論文。
    7.廖建能(2003) 『「隔間水槽阻尼器」調控參數對結構減振之效應』,國立成功大學水利 及海洋工程研究所碩士論文。
    8.蘇建瑋(2003) 『「主動式隔間水槽阻尼器」操控模式對結構減振之效應』,國立成功大 學水利及海洋工程研究所碩士論文。
    9.Chang, C.C., (1999) “Mass dampers and their optimal designs for building   vibration control,” Engineering Structures, vol. 21, Issue: 5, pp. 454-463.
    10.Chen,C.C,and Chen,H.C.,(1982) “The Finite Analytic Method,”IIHR Report   232-IV, IOWA Institute of Hydraulic Research, The University of IOWA
    11.Fediw, A.A., Isyumov, N. and Vickery, B.J., (1995) “Performance of a tuned
     sloshing water damper,” Journal of Wind Engineering and Industrial
     Aerodynamics, vol. 57. n 2-3, pp. 237-247.
    12.Fujino et al (1988a), “An Experimental Study on Tuned Liquid Damper Using
     Circular Containers,” JSCE Joural of Structural Engineering, Vol. 34A, pp.
     603-616.
    13.Fujino et al (1988b), “Parametric Studies on Tuned Liquid Damper(TLD)    Using Circular Containers by Free-Oscillation Experiments,” Structural
     Engineering/Earthquake Engineering, JSCE, No. 398/I-10, Vol. 5, No. 2, pp.
     381s-391s。
    14.Gardarsoon S., Yeh H., and Reed D., (2001) “Behavior of Sloped-Bottom
     Tuned Liquid Dampers,” J. Eng. Mech. ASCE 127, pp. 266-271.
    15.Koh, C. G., Mahatma, S., Wang, C. M., (1995) “Reduction of structural    vibrations by multiple-mode liquid dampers,” Engineering Structures, vol.   17, Issue: 2, pp. 122-128.
    16.S.J. Li; G.Q. Li; J. Tang,.; Q.S. Li, (2002) “Shallow rectangular TLD for  structural control implementation,” Applied Acoustics, vol. 63, Issue: 10,  pp.1125-1135.
    17.Wu, J.S. and Hsieh, M., (2002) “Study on the dynamic characteristic of a U- type tuned liquid damper,” Ocean Engineering, vol. 29, pp. 689-709.
    18.Xue, S.D.; Ko, J.M.; Xu, Y.L., (2000) “Tuned liquid column damper for    suppressing pitching motion of structures,” Engineering Structures, vol.   22, Issue: 11, pp. 1538-1551.

    下載圖示 校內:立即公開
    校外:2005-09-06公開
    QR CODE