簡易檢索 / 詳目顯示

研究生: 杜彥頤
Du, Yan-Yi
論文名稱: 適用於大尺度系統之分散式軌跡追蹤器:反覆學習與數位重新設計方法
Decentralized Trajectory Trackers for Large-Scale Systems: Iterative Learning and Digital Redesign Approaches
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 179
中文關鍵詞: 反覆學習控制反飽和機制分散式軌跡追蹤器數位重新設計
外文關鍵詞: Iterative learning control, anti-windup scheme, decentralized trajectory tracker, digital redesign
相關次數: 點閱:138下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對有/無輸入限制的大尺度資料取樣系統,本論文藉由數位重新設計技術提出反覆學習型分散式軌跡追蹤器,以達到良好的追蹤效果與閉迴路解耦特性。其研究主題陳述如下:首先,針對複雜的非線性系統,提出一個具有進化演算法調整的觀測型反覆學習控制器,以克服傳統反覆學習控制在學習收斂性、收斂速度與其典型限制「初始值一致性」的問題。接著,考慮具有輸入限制的線性系統,提出一個含有間接學習機制的最佳化反飽和式追蹤器,以解決高增益最佳化追蹤器之輸入飽和問題。藉由權重因子的調整,本文所提反飽和機制可避免複雜的數值運算且盡可能在不損耗追蹤效果情況下,精準調整控制輸入以符合規格限制。再者,針對由多個互聯子系統所組成的大尺度系統之控制問題,提出具有串接式反覆學習機制且以參考模型為基礎的分散式適應性追蹤器,以同時獲得強健的解耦特性與良好的追蹤效果。最後,考慮具有輸入限制與狀態延遲的大尺度未知聯結系統,運用離線式估測器/卡爾曼濾波器鑑別法則來決定適當低階的獨立式模型與估測器,且配合前述的反飽和機制以建構分散式軌跡追蹤器。在本論文中,以多個例題來說明所提方法之有效性。

    Via the digital redesign technique, this dissertation proposes iterative learning-based decentralized trajectory trackers for large-scale sampled data systems with/without input constraints to obtain good tracking performances and a closed-loop decoupling property. The major research topics of this dissertation are stated as follows: Firstly, an observer-based iterative learning control (ILC) scheme with evolutionary programming is proposed to resolve some problems of a traditional ILC on learning convergence, convergence speed, and the typical limitation, identical initial condition (i.i.c.), for complicated nonlinear systems. Secondly, for linear input constrained systems, an optimal anti-windup tracker with an indirect iterative learning scheme is presented to resolve the input saturation problem of a high-gain optimal tracker. Avoiding the complex numerical calculation, the proposed anti-windup scheme by adjusting a weighted factor can precisely regulate the control input to satisfy the specified restriction without losing the good tracking performance as possible. Thirdly, to deal with the control problem of large-scale systems consisting N interconnected subsystems, a model-reference-based decentralized adaptive tracker with a cascade iterative learning scheme is developed to simultaneously obtain the robust decoupling property in time domain and the good tracking performance in iterative domain. Finally, applying off-line observer/Kalman filter identification (OKID) determines appropriate (low-)orders of the independent models/observers, and then adopting the proposed anti-windup scheme according to these models establishes decentralized trajectory trackers for unknown interconnected large-scale systems with input constraints and state delay. Some illustrative examples are given to demonstrate the effectiveness of the proposed methodologies.

    中文摘要 i Abstract ii Acknowledgement iii Contents iv List of Tables vii List of Figures viii Symbols and Abbreviations xiii Chapter 1 Introduction 1 1.1 Literature survey 2 1.1.1 Iterative learning control 2 1.1.2 Anti-windup control 5 1.1.3 Decentralized control 6 1.1.4 Digital redesign 7 1.2 Dissertation overview 8 Chapter 2 Observer-Based Iterative Learning Control for MIMO Nonlinear Systems 11 2.1 Introduction 12 2.2 Linear quadratic regulator-based observer for nonlinear systems 14 2.2.1 Linear quadratic regulator-based observer design 14 2.2.2 Optimal linearization algorithm 16 2.3 Observer-based iterative learning control 18 2.3.1 Iterative learning control problem 18 2.3.2 Iterative learning control with LQR-based observer 21 2.3.3 Convergence analysis of OB-ILC 23 2.4 Improved OB-ILC tracker via evolutionary programming 27 2.4.1 Quasi-random sequences (QRS) 28 2.4.2 The procedure for evolutionary programming 30 2.5 Other improved issues of the ILC tracker 34 2.5.1 Initialization of the control input for the ILC tracker 34 2.5.2 Modified learning rule for robot manipulator 34 2.5.3 Resolution of initial shift problem for OB-ILC 36 2.6 Design procedure of observer-based EP-ILC for nonlinear systems 38 2.7 Illustrative examples 42 2.8 Summary 47 Chapter 3 Iterative Learning-Based Anti-windup Tracker for MIMO Systems under Input Constraint 49 3.1 Introduction 50 3.2 Modified optimal linear control 52 3.2.1 Motivation of the modified optimal control scheme 52 3.2.2 Characteristic of the modified control scheme 55 3.2.3 Iterative learning-based anti-windup scheme 60 3.2.4 Detailed procedure of the modified LQAT design 64 3.3 Digital redesign of optimal control for sampled-data systems under input constraints 67 3.4 An illustrative example 74 3.5 Summary 91 Chapter 4 Iterative Learning-Based Decentralized Adaptive Tracker for Large-Scale System 93 4.1 Introduction 94 4.2 Model reference decentralized adaptive control 96 4.2.1 Decentralized reference model 96 4.2.2 Strictly decentralized controller design 98 4.3 Digital redesign of decentralized adaptive control system 101 4.3.1 Digital redesign methodology 101 4.3.2 Digitally redesigned model-reference-based decentralized adaptive controller 106 4.4 Evolutionary programming-based iterative learning control 111 4.4.1 Discrete iterative learning control 111 4.4.2 Improved ILC via evolutionary programming 114 4.5 Summaries of the proposed design procedure 116 4.6 An illustrative example 117 4.7 Summary 125 Chapter 5 OKID-Based Decentralized Anti-windup Tracker for Unknown Interconnected Large-Scale System 127 5.1 Introduction 128 5.2 OKID-based decentralized modeling and control 130 5.3 Observer/Kalman filter identification 133 5.3.1 Basic observer equation 133 5.3.2 Computation of Markov parameters 136 5.3.2-1 System Markov parameters 136 5.3.2-2 Observer gain Markov parameters 136 5.3.3 Eigensystem realization algorithm 136 5.3.4 Relationship to a Kalman Filter 139 5.4 Digital redesign of observer-based anti-windup tracker 140 5.4.1 Observer-based modified LQAT design 141 5.4.2 Digital redesign of the observer-based modified LQAT 144 5.5 Design procedure 146 5.6 An illustrative example 147 5.7 Summary 159 Chapter 6 Conclusions 160 6.1 Conclusions 160 6.2 Future research directions 162 Appendix A 163 References 166 Biography 177 Publication List 178

    [1] Ahn, H. S., Chen, Y. Q., and Moore, K. L., “Iterative learning control: brief survey and categorization,” IEEE Transactions on System, Man, and Cybernetics, Part C: Applications and Reviews, vol. 37(6), pp. 1099-1121, 2007.
    [2] Andrei, N., Sparse Systems: Digraph Approach of Large-Scale Linear Systems Theory. Verlag TÜV Rheinland, Köln, 1985.
    [3] Arimoto, S., “Learning control theory for robotic motion,” International Journal of Adaptive Control and Signal Processing, vol. 4(6), pp. 543-564, 1990.
    [4] Arimoto, S., Kawamura, S., and Miyazaki, F., “Bettering operation of robots by learning,” Journal of Robotic Systems, vol. 1(2), pp. 123-140, 1984.
    [5] Barton, K. L. and Alleyne, A. G., “A cross-coupled iterative learning control design for precision motion control,” IEEE Transactions on Control Systems Technology, vol. 16(6), pp. 1218-1231, 2008.
    [6] Bernstein, D. S., Matrix mathematics: theory, facts, and formulas with application to linear systems theory. Princeton University Press, Princeton, 2005.
    [7] Bristow, D. A., Tharayil, M., and Alleyne, A. G., “A survey of iterative learning control,” IEEE Control Systems Magazine, vol. 26(3), pp. 96-114, 2006.
    [8] Chang, J. F., Yang, Y. S., Liao, T. L., and Yan, J. J., “Parameter identification of chaotic systems using evolutionary programming approach,” Expert Systems with Applications, vol. 35(4), pp. 2074-2079, 2008.
    [9] Chen, Y., Wen, C., Gong, Z., and Sun, M., “An iterative learning controller with initial state learning,” IEEE Transactions on Automatic Control, vol. 44(2), pp. 371-376, 1999.
    [10] Chi, R., Hou, Z., Sui, S., Yu, L., and Yao, W., “A new adaptive iterative learning control motivated by discrete-time adaptive control,” International Journal of Innovative Computing, Information and Control, vol. 4(6), pp. 1267-1274, 2008.
    [11] Chien, C. J. and Liu, J. S., “A P-type iterative learning controller for robust output tracking of nonlinear time-varying systems,” International Journal of Control, vol. 64(2), pp. 319-334, 1996.
    [12] Chien, C. J., “A combined adaptive law for fuzzy iterative learning control of nonlinear systems with varying control tasks,” IEEE Transactions on Fuzzy Systems, vol. 16(1), pp. 40-51, 2008.
    [13] Davison, E. J. and Aghdam, A. G., Decentralized Control of Large-Scale Systems. Springer Verlag, 2011.
    [14] Davison, E. J., “The robust decentralized control of a servomechanism problem for composite system with input-output interconnection,” IEEE Transactions on Automatic Control, vol. 24(2), pp. 325-327, 1979.
    [15] Dedieu, H. and Ogorzalek, M. J., “Controlling chaos in Chua’s circuit via sampled inputs,” International Journal of Bifurcation Chaos, vol. 4(2), pp. 447-455, 1994.
    [16] Doh, T. Y., Moon, J. H., Jin, K. B., and Chung, M. J., “Robust iterative learning control with current feedback for uncertain linear systems,” International Journal of System Science, vol. 30(1), pp. 39-47, 1999.
    [17] Du, Y. Y., Tsai, J. S. H., Chen, Y. H., Guo, S. M., and Shieh, L. S., “Decentralized input-constraint trackers for unknown large-scale interconnected sampled-data systems with state delay,” The 30th IASTED Conference on Modelling, Identification, and Control, Phuket, Thailand, Nov. 24-26, 2010.
    [18] Du, Y. Y., Tsai, J. S. H., Guo, S. M., Su, T. J., and Chen, C. W., “Observer-based iterative learning control with evolutionary programming algorithm for MIMO nonlinear systems,” International Journal of Innovative Computing, Information and Control, vol. 7(3), pp. 1357-1374, 2011.
    [19] Freeman, C. T., Alsubaie, M. A., Cai, Z., Rogers, E., and Lewin, P. L., “Model and experience-based initial input construction for iterative learning control,” International Journal of Adaptive Control and Signal Processing, vol. 25(5), pp. 430-447, 2011.
    [20] Gilbert, E. G., “Controllability and observability in multivariable control systems,” SIAM Journal on Control, vol. 2(1), pp. 128-151, 1963.
    [21] Goodwin, G. C. and Sin, K. S., Adaptive Filtering Prediction and Control. Prentice Hall, Englewood, 1984.
    [22] Gunnarsson, S., Norrlof, M., Rahic, E., and Ozbek, M., “On the use of accelerometers in iterative learning control of a flexible robot arm,” International Journal Control, vol. 80(3), pp. 363-373, 2007.
    [23] Guo, S. M. and Peng, Z. H., “An observer-based decentralized tracker for sampled-data systems: an evolutionary programming approach,” International Journal of General Systems, vol. 34(4), pp. 421-449, 2005.
    [24] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems – I, Fundamental Theory and Applications, vol. 47(11), pp. 1557-1570, 2000.
    [25] Guo, S. M., Shieh, L. S., Lin, C. F., and Chandra, J., “State-space self-tuning control for nonlinear stochastic and chaotic hybrid systems,” International Journal Bifurcation and Chaos, vol. 11(4), pp. 1079-1113, 2001.
    [26] Halton, J. H., “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische Mathematik, vol. 2(1), pp. 84-90, 1960.
    [27] Hillenbrand, S. and Pandit, M., “An iterative learning controller with reduced sampling rate for plants with variations of initial states,” International Journal of Control, vol. 73(10), pp. 882-889, 2000.
    [28] Hippe, P., Windup in Control: Its Effects and Their Prevention. Springer-Verlag, London, 2006.
    [29] Horn, R. and Johnson, C., Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1994.
    [30] Hu, T., Teel, A. R., and Zaccarian, L., “Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance,” Automatica, vol. 44(2), pp. 512-519, 2008.
    [31] Hung, M. L., Lin, J. S., Yan, J. J., and Liao, T. L., “Optimal PID control design for synchronization of delayed discrete chaotic systems,” Chaos, Solitons and Fractals, vol. 35(4), pp. 781-785, 2008.
    [32] Ioannou, P. A., and Sun, J., Robust Adaptive Control. Prentice-Hall, Englewood, 1996.
    [33] Jamshidi, M., Large scale System: Modeling and Control. Elserier Science Publishing, New York, 1983.
    [34] Jiang, P., Bamforth, L. C. A., Feng, Z., Baruch, J. E. F., and Chen, Y. Q., “Indirect iterative learning control for a discrete visual servo without a camera-robot model,” IEEE Transactions on System, Man, and Cybernetics Part B: Cybernetics, vol. 37(4), pp. 863-876, 2007.
    [35] Johansen, T. A., Petersen, I., and Slupphaug, O., “Explicit sub-optimal linear quadratic regulation with state and input constraints,” Automatica, vol. 38(7), pp. 1099-1111, 2002.
    [36] Juang, J. N., Applied System Identification. Prentice Hall, New Jersey, 1994.
    [37] Kim, D. I. and Kim, S., “An iterative learning control method with application for CNC machine tools,” IEEE Transactions on Industry Applications, vol. 32(1), pp. 66-72, 1996.
    [38] Kim, J. S., Yoon, T. W., Shim, H., and Seo, J. H., “Switching adaptive output feedback model predictive control for a class of input-constrained linear plants,” IET Control Theory and Application, vol. 2(7), pp. 573-582, 2008.
    [39] Kothare, M. V., Campo, P. J., Morari, M., and Nett, C. N., “A unified framework for the study of anti-windup designs,” Automatica, vol. 30(12), pp. 1869-1883, 1994.
    [40] Kuc, T. Y., Lee, J. S., and Nam, K., “An iterative learning control theory for a class of nonlinear dynamic systems,” Automatica, vol. 28(6), pp. 1215-1221, 1992.
    [41] Kuo, B. C., Digital Control Systems. Holt, Rinehart and Winston, New York, 1980.
    [42] Lee, H. S. and Bien, Z., “Study on robustness of iterative learning control with nonzero initial error,” International Journal of Control, vol. 64(3), pp. 345-359, 1996.
    [43] Lewis, F. L. and Syrmos, V. L., Optimal Control. John Wiley & Sons, New York 1995.
    [44] Lin, M. H., Tsai, J. S. H., Chen, C.W., Guo, S. M., and Chu, C. A., “Digital redesign of the decentralized adaptive tracker for linear large-scale systems,” International Journal of Systems Science, vol. 41(2), pp. 173-187, 2010.
    [45] Liu, C. A. and Wang, Y., “A new dynamic multi-objective optimization evolutionary algorithm,” International Journal of Innovative Computing, Information and Control, vol. 4(8), pp. 2087-2096, 2008.
    [46] Liu, C. and Wang, Y., “A new evolutionary algorithm for multi-objective optimization problems,” ICIC Express Letters, vol. 1(1), pp. 93-98, 2007.
    [47] Liu, C., “New evolutionary algorithm for multi-objective constrained optimization,” ICIC Express Letters, vol. 2(4), pp. 339-344, 2008.
    [48] Longman, R. W., “Iterative learning control and repetitive control for engineering practice,” International Journal of Control, vol. 73(10), pp. 930-954, 2000.
    [49] Maeder, U., Cagienard, R., and Morari, M., Explicit Model Predictive Control. Springer-Berlin, Heidelberg, 2007.
    [50] Mare, J. B. and De Dona, J. A., “Solution of the input-constrained LQR problem using dynamic programming,” Systems & Control Letters, vol. 56(5), pp. 342-348, 2007.
    [51] Meng, D., Jia, Y., and Du, J., “Feedback approach to design fast iterative learning controller for a class of time-delay systems,” IET Control Theory and Application, vol. 3(2), pp. 225-238, 2009.
    [52] Meng, D., Jia, Y., Du, J., and Yu, F., “Robust design of a class of time-delay iterative learning control systems with initial shifts,” IEEE Transactions Circuits and Systems I: Regular Papers, vol. 56(8), pp. 1744-1757, 2009.
    [53] Mi, C., Lin, H., and Zhang, Y., “Iterative learning control of antilock braking of electric and hybrid vehicles,” IEEE Transactions on Vehicular Technology, vol. 54(2), pp. 486-494, 2005.
    [54] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolutionary Programs. Springer-Verlag, 1996.
    [55] Mirkin, B. M., “Decentralized adaptive controller with zero residual tracking errors,” Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99), Haifa, Israel, pp. 28-30, Jun. 28-30, 1999.
    [56] Mirkin, B. M., “Proportional-integral-delayed algorithm of adaptation,” Automation, no. 5, pp. 13-20, 1991.
    [57] Morita, Y. and Wakuya, H., “Online feedback error learning control for an inverted pendulum,” International J. of Innovative Computing, Information and Control, vol. 5(10), pp. 3565-3572, 2009.
    [58] Mulder, E. F., Tiwari, P. Y., and Kothare, M. V., “Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization,” Automatica, vol. 45(3), pp. 805-811, 2009.
    [59] Narendra, K. S. and Oleng, N. O., “Exact output tracking in decentralized adaptive control systems,” IEEE Transactions on Automatic Control, vol. 47(2), pp. 390-395, 2002.
    [60] Norrlof, M., “An adaptive iterative learning control algorithm with experiments on an industrial robot”, IEEE Transactions on Robotics Automation, vol. 18(2), pp. 245-251, 2002.
    [61] Ouyang, P. R., Petz, B. A., and Xi, F. F., “Iterative learning control with switching gain feedback for nonlinear systems,” Journal of Computational and Nonlinear Dynamics, vol. 6(1), art. no. 011020, 2011.
    [62] Park, K. H., “An average operator-based PD-type iterative learning control for variable initial state error,” IEEE Transactions on Automatic Control, vol. 50(6), pp. 865-869, 2005.
    [63] Park, K. H., Bien, Z., and Hwang, D. H., “A study on the robustness of a PID-type iterative learning controller against initial state error,” International Journal of System Science, vol. 30(1), pp. 49-59, 1999.
    [64] Ruan, X., Wu, H., Li, N., and Wan, B., "Convergence analysis in sense of Lebesgue-p norm of decentralized non-repetitive iterative learning control for linear large-scale systems," Journal of Systems Science & Complexity, vol. 22(3), pp. 422-434, 2009.
    [65] Ruan, X., Zenn, Z., and Park, K. H., “Decentralized iterative learning control to large-scale industrial processes for nonrepetitive trajectory tracking,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 38(1), pp. 238-252, 2008.
    [66] Saab, S. S., “Stochastic P-type/D-type iterative learning control algorithms, International Journal of Control,” vol. 76(2), pp. 139-148, 2003.
    [67] Salcedo-Sanz, S., Cruz-Roldan, F., Heneghan, C., and Yao, X., “Evolutionary design of digital filters with application to subband coding and data transmission,” IEEE Transactions on Signal Processing, vol. 55(4), pp. 1193-1203, 2007.
    [68] Sandell, N. R., Jr., Varaiya, P., Athans, M., and Safonov, M. G., “Survey of decentralized control methods for large scale systems,” IEEE Transactions on Automatic Control, vol. 23(2), pp. 108-128, 1978.
    [69] Sawada, K., Kiyama, T., and Iwasaki, T., “Generalized sector synthesis of output feedback control with anti-windup structure,” System Control Letter, vol. 58(6), pp. 421-428, 2009.
    [70] Shieh, L. S., Chen, G., and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems,” International Journal of Systems Science, vol. 23(6), pp. 839-854, 1992.
    [71] Shieh, L. S., Wang, W. M., and Appu Panicker, M. K., “Design of PAM and PWM digital controller for cascaded analog system,” ISA Transactions, vol. 37(3), pp. 201-213, 1998.
    [72] Šiljak, D. D., Large Scale Dynamic Systems: Stability and Structure. North-Holland, New York, 1978.
    [73] Singh, M. G., Decentralised Control. North-Holland, Amsterdam, 1981.
    [74] Soderstrom, T. and Stoica, P., System identification. Prentice Hall, New Jersey, 1989.
    [75] Solmaz, S. K. and Faryar, J., “Modified anti-windup compensators for stable plants,” IEEE Transactions on Automatic Control, vol. 54(8), pp. 1934-1939, 2009.
    [76] Sugie, T. and Sakai, F., “Noise tolerant iterative learning control for a class of continuous-time systems,” Automatica, vol. 43(10), pp. 1766-1771, 2007.
    [77] Sun, M. and Wang, D., “Iterative learning control with initial rectifying action,” Automatica, vol. 38(7), pp. 1177-1182, 2002.
    [78] Tan, K. K., Zhao, S., and Xu, J. X., “Online automatic tuning of a proportional integral derivative controller based on an iterative learning control approach,” IET Control Theory and Application, vol. 1(1), pp. 90-96, 2007.
    [79] Tarbouriech, S. and Turner, M., “Anti-windup design: an overview of some recent advances and open problems,” IET Control Theory and Applications, vol. 3(1), pp. 1-19, 2009.
    [80] Taybei, A. and Xu, J. X., “Observer-based iterative learning control for a class of time-varying nonlinear systems,” IEEE Transactions on Circuits and Systems-I, Fundamental Theory and Application, vol. 50(3), pp. 452-455, 2003.
    [81] Tayebi, A. and Chien, C. J., “A unified adaptive iterative learning control framework for uncertain nonlinear systems,” IEEE Transactions on Automatic Control, vol. 52(10), pp. 1907-1913, 2007.
    [82] Tiwari, P. Y., Mulder, E. R., and Kothare, M. V., “Synthesis of stabilizing antiwindup controllers using piecewise quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 52(12), pp. 2341-2345, 2007.
    [83] Tsai, J. S. H., Chien, T. H., Guo, S. M., Chang, Y. P., and Shieh, L. S., “State-space self-tuning control for stochastic chaotic fractional-order chaotic systems,” IEEE Transactions on Circuits and Systems Part I: Regular Papers, vol. 54(3), pp. 632-642, 2007.
    [84] Tsai, J. S. H., Du, Y. Y., Dunn, A. C., and Shieh, L. S., “EP-based robustness analysis of optimal load allocation for boiler systems,” IMA Journal of Mathematical Control and Information, vol. 26(2), pp. 197-211, 2009.
    [85] Tsai, J. S. H., Du, Y. Y., Guo, S. M., Chen, C. W., and Shieh, L. S., “Optimal anti-windup digital redesign of MIMO control systems under input constraints,” IET Control Theory and Applications, vol. 5(3), pp. 447-464, 2011.
    [86] Tsai, J. S. H., Du, Y. Y., Guo, S. M., Shieh, L. S., and Chen, C. W., “Improved observer-based digital redesign tracker for nonlinear sampled-data systems,” The 2008 CACS International Automatic Control Conference (CACS/IACC'08), Tainan, Taiwan, Nov. 21-23, 2008.
    [87] Tsai, J. S. H., Du, Y. Y., Huang, P. H., Guo, S. M., Shieh, L. S., and Chen, Y., “Iterative learning-based decentralized adaptive tracker for large-scale systems: A digital redesign approach,” ISA Transactions, vol. 50(3), pp. 344-356, 2011.
    [88] Tsai, J. S. H., Hu, N. T., Yang, P. C., Guo, S. M., and Shieh, L. S., “Modeling of decentralized linear observer and tracker for a class of unknown interconnected large-scale sampled-data nonlinear system with closed-loop decoupling property,” Computers and Mathematics with Applications, vol. 60(3), pp. 541-562, 2010.
    [89] Valluri, S. and Soroush, M., “A non-linear controller design method for processes with saturating actuators,” International Journal Control, vol. 76(7), pp. 698-716, 2003.
    [90] Van Der Corput, J. G., Verteilungsfunktionen I, Koninklijke Nederlandse Akademie van Wetenschappen Proceedings, vol. 38, pp. 813-821, 1935.
    [91] Wang, Y., Gao, F., and Dole III, F. J., “Survey on iterative learning control, repetitive control, and run-to-run control,” Journal of Process Control, vol. 19(10), pp. 1589-1600, 2009.
    [92] Wang, Z. Y., Huang, L. H., and Wang, Y. N., “Robust decentralized adaptive control for a class of uncertain neural networks with time-varying delays,” Applied Mathematics and Computation, vol. 215(12), pp. 4154-4163, 2010.
    [93] Wu, F. and Lu, B., “Anti-windup control design for exponentially unstable LTI systems with actuator saturation,” Systems & Control Letters, vol. 52(4), pp. 305-322, 2004.
    [94] Wu, H. S., “Decentralized adaptive robust control for a class of large-scale systems including delayed state perturbations in the interconnections,” IEEE Transactions on Automatic Control, vol. 47(10), pp. 1745-1751, 2002.
    [95] Wu, H. S., “Decentralized iterative learning control for a class of large scale interconnected dynamical systems,” Journal of Mathematical Analysis and Applications, vol. 327(1), pp. 233-245, 2007.
    [96] Wu, H. S., “Decentralized robust control for a class of large-scale interconnected systems with uncertainties,” International Journal of System Science, vol. 20(12), pp. 2597-2608, 1989.
    [97] Xu, J. X. and Tan, Y., “Robust optimal design and convergence properties analysis of iterative learning control approaches,” Automatica, vol. 38(11), pp. 1867-1880, 2002.
    [98] Xu, J. X. and Tan, Y., Linear and Nonlinear Iterative Learning Control. Springer-Berlin, Heidelberg, 2003.
    [99] Xu, J. X. and Yan, R., “On initial conditions in iterative learning control,” IEEE Transactions on Automatic Control, vol. 50(9), pp. 1349-1354, 2005.
    [100] Xu, J. X., Panda, S. K., and Lee, T. H., Real-time Iterative Learning Control Design and Applications. Springer-Verlag, London, 2009.
    [101] Ye, X. D. and Huang, J., “Decentralized adaptive output regulation for a class of large-scale nonlinear systems,” IEEE Transactions on Automatic Control, vol. 48(2), pp. 276-281, 2003.
    [102] Ye, Y., Tayebi, A., and Liu, X., “All-pass filtering in iterative learning control,” Automatica, vol. 45(1), pp. 257-264, 2009.
    [103] Yoon, S. S., Park, J. K., and Yoon, T. W., “Dynamic anti-windup scheme for feedback linearizable nonlinear control systems with saturating inputs,” Automatica, vol. 44(12), pp. 3176-3180, 2008.
    [104] Zaccarian, L. and Teel, A. R., “Nonlinear scheduled anti-windup design for linear systems,” IEEE Transactions on Automatic Control, vol. 49(11), pp. 2055-2061, 2004.
    [105] Zaccarian, L., Nesic, D., and Teel, A. R., “L2 anti-windup for linear dead-time systems,” System Control Letter, vol. 54(12), pp. 1205-1217, 2005.
    [106] Zhang, B., Wang, D. W., Ye, Y. Q., Zhou, K. L., and Wang, Y. G., “Cyclic pseudo-downsampled iterative learning control for high performance tracking,” Control Engineering Practice, vol. 17(8), pp. 957-965, 2009.
    [107] Zhou, J. and Wen, C. Y., “Decentralized backstepping adaptive output tracking of interconnected nonlinear systems,” IEEE Transactions on Automatic Control, vol. 53(10), pp. 2378-2384, 2008.

    下載圖示 校內:2013-07-04公開
    校外:2013-07-04公開
    QR CODE