簡易檢索 / 詳目顯示

研究生: 王國政
Wang, Kuo-cheng
論文名稱: 液晶顯示器整合型電源供應器之研製
Study and Implementation of Integrated Power Supply for Liquid Crystal Display
指導教授: 梁從主
Liang, Tsorng-juu
陳建富
Chen, Jiann-fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 87
中文關鍵詞: LCD整合型電源諧振換流器LLC諧振轉換器冷陰極管
外文關鍵詞: LLC resonant converter, CCFL, LIPS, resonant inverter
相關次數: 點閱:97下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研製「液晶顯示器整合型電源供應器」,前級為昇壓型功因修正電路,後級包含直流/交流換流器與直流/直流轉換器,其中高壓輸入換流器用以驅動冷陰極管,雙組輸出LLC諧振轉換器則用以提供系統直流電源。整合型電源供應器可大幅縮減現有電源供應器的用料成本,並具有高效率高功率密度的優點。本論文首先探討電路架構應用於整合型電源供應器之特性與優缺點,並分析電路工作原理及設計過程。最後實際製作「液晶顯示器整合型電源供應器」,電路之輸入交流市電電壓為90 V~264 V,所驅動的16支燈管電流誤差率均維持在±3 %,且面板均勻度可達81.4 %以上;雙組輸出LLC諧振轉換器輸出12 V/6 A及5 V/6 A,負載電壓調整率均維持在±5 %以內。在220 V輸入交流電壓時,系統滿載效率為89.1 %,功率因數可達0.99。

    In this thesis, a two-stage integrated power supply for liquid crystal display (LCD) is studied and implemented. The front stage is a boost converter with power-factor correction (PFC) function. The second includes a resonant inverter with high-voltage input and an LLC resonant converter with dual outputs. The resonant inverter drives the cold-cathode fluorescent lamp (CCFL) backlight module, and the LLC resonant converter supplies the LCD driving system with a DC source. In comparison with conventional power-supply units, an integrated power supply can not only save significant cost and material but also possess high efficiency and high power density. The characteristics of the topology that is used for the integrated power supply are discussed, and the operation principles and design process are also studied in this thesis. Finally, an integrated power supply with universal AC input (90 V~264 V) is performed. The lamp-current error associated with 16 sample CCFLs can be maintained at ±3 %, and the panel uniformity is above 81.4%. The voltage regulation of the LLC resonant converter with dual outputs, 12 V/6 A and 5 V/6 A, is ±5 %. When 220 V input voltage is applied, the efficiency of the proposed power supply is 89.1 %, and the power factor can be up to 0.99 at the full-load condition.

    目 錄 摘要.........................Ⅰ 誌謝.........................Ⅲ 目錄.........................Ⅳ 表目錄........................Ⅶ 圖目錄........................Ⅷ 第一章 緒論 1.1 研究背景與目的.................1 1.2 本文架構簡介..................7 第二章 冷陰極螢光燈管特性與驅動電路 2.1 液晶顯示器背光模組...............8 2.1.1 背光模組機構..................8 2.1.2 可用於液晶顯示器之背光源............10 2.2 冷陰極螢光燈管特性...............12 2.2.1 冷陰極螢光燈管的發光原理與電氣特性.......12 2.2.2 冷陰極螢光燈管的溫度計效應...........14 2.2.3 冷陰極螢光燈管的穩態特性量測..........15 2.3 常見的冷陰極螢光燈管換流器拓樸架構.......17 2.3.1 電流饋入推挽式並聯諧振換流器..........17 2.3.2 具降壓級電流饋入推挽式並聯諧振換流器......19 2.3.3 全橋諧振換流器.................20 2.3.4 半橋諧振換流器.................21 2.4 多燈管均流機制.................23 2.4.1 多組換流器並聯驅動...............23 2.4.2 單組換流器多燈管電容均流............25 2.4.3 單組換流器多燈管平衡變壓器均流.........26 第三章 具整合型液晶顯示器電源系統 3.1 功率因數修正電路................27 3.2 高壓輸入半橋諧振換流器.............30 3.2.1 電路操作原理..................30 3.2.2 諧振網路特性分析................35 3.3 多燈管均流電路.................39 3.3.1 電容均流與平衡變壓器均流電路比較........39 3.3.2 多燈管平衡變壓器均流電路............43 3.4 具有軟啟動之數位調光..............45 3.5 雙組輸出LLC半橋諧振轉換器...........48 第四章 設計考量與實驗結果 4.1 液晶顯示器整合型電源供應器電路設計規格.....54 4.2 昇壓型功因修正電路參數設計...........58 4.3 高壓輸入半橋諧振換流器參數設計.........60 4.4 雙組輸出LLC諧振轉換器參數設計.........63 4.5 電路實作波形與數據分析.............65 第五章 結論與未來展望 5.1 結論......................84 5.2 未來展望....................85 參考文獻........................86

    [1]石岱勳,平面顯示器技術及未來發展趨勢,龍璟文化,民國九十三年。
    [2]王信陽、黃宣宜,光電顯示器産業及技術調查,光電科技工業協進會,民國九十四年。
    [3]R. Young, “Flat Panel Display Market Outlook: From Cyclicality to Maturity,” Display Search, January 8, 2006.
    [4]曾偉菁,發光二極體發光特性與其驅動電路之研究,國立成功大學電機工程學系碩士論文,民國九十五年六月。
    [5]林芬卉,TV用背光模組産業暨技術發展趨勢,DigiTimes Research,Aug. 2006。
    [6]J. H. Kahl, “Understanding Cold Cathode Fluorescent Lamps(CCFLs), AI-007 Application Information, JKL Component Corporations, 1997.
    [7]V. J. Francis, Fundamentals of Discharge Tube Circuits. London: Methuen & Co. Ltd., 1948.
    [8]E. Deng and S. Cuk, “Negative incremental impedance and stability of fluorescent lamps,” in proc. of IEEE APEC’97, 1997, pp. 1050-1056.
    [9]C. G. Kim, K. C. Lee, and B. H. Cho, ”Modeling of CCFL using lamp delay and stability analysis of backlight inverter for large size LCD TV,” in proc. of IEEE APEC’05, 2005, pp.1751-1757.
    [10]Jim Williams, “A Fourth Generation of LCD Backlight Technology,” Linear Technology, November 1995.
    [11]Harison Toshiba Lighting Corp. (2004). Cold Cathode Fluorescent Lamp: Operating wave form and mercury migration: http://www.htl.co.jp/pro/cold/014_e.html
    [12]M. Gulko and S. Ben-Yaakov, “Current-sourcing push-pull parallel-resonance inverter (CS-PPRI): theory and application as a discharge lamp driver,” IEEE Trans. Ind. Electronics, vol. 41, no. 3, pp.285-291, June 1994.
    [13]J. A. Donahue and M. M. Jovanovic, “The LCC inverter as a cold cathode fluorescent lamp driver”, in proc. of IEEE APEC’94, 1994, pp.427-433.
    [14]Y. L. Lin and A. F. Witulski, “Analysis and design of current-fed push-pull resonant inverter-cold cathode fluorescent lamp drivers,” in proc. of IEEE IAS’96, 1996, pp.2149-2152.
    [15]M. S. Lin, W. J. Ho, F. Y. Shih, D. Y. Chen, and Y. P. Wu, “A cold fluorescent lamp driver circuit with synchronous primary-side dimming control,” IEEE Trans. Ind. Electronics, vol. 45, no. 3, pp.249-255, Apr. 1998.
    [16]Eddy Wells, “Using the UC3871 and UC3872 Resonant Fluorescent Lamp Drivers in Floating Lamp Applications,” DN-75, Texas Instruments, 1999.
    [17]G. H. Kweon, Y. C. Lin, and S. H. Yang, “An analysis of the backlight inverter by topologies,” in Proc. of IEEE ISIE’01, 2001, pp.896-900.
    [18]張智勝,冷陰極螢光燈控制電路之研製,國立成功大學電機工程學系碩士論文,民國九十三年六月。
    [19]C. G. Kim, K. C. Lee, and B. H. Cho, “Analysis of current distribution in driving multiple cold cathode fluorescent lamps(CCFL),” IEEE Trans. Ind. Electronics, vol. 54, no. 1, pp. 365-373, Feb. 2007.
    [20]Y. H. Tsai, “Multiple CCFL current balancing scheme for single controller topologies,” U.S. Patent 6 459 216, Oct. 1, 2002
    [21]J. Chou and A. D. Cruz, “Lamp driving topology,” U.S. Patent 6 559 606, May 6, 2003.
    [22]Y. K. Lo, K. J. Pai, and S. C. Yen, “A high-voltage input backlight module driver for multi-lamp LCD panels,” in proc. of IEEE PEDS’05, 2006, pp. 663-665.
    [23]林憲男、林佳昌、陸正霖、莫清賢,含電容均流電路之多管冷陰極螢光燈高壓驅動電路,2006第五屆台灣電力電子研討會,2006。
    [24]W. H. Lin, C. Y. Chen, D. K. Chang, and C. C. Hsu, “Multi-lamp driving system,” U.S. Patent 6 717 372, Apr. 6, 2004.
    [25]S. T. Lee, “Circuit structure for driving a plurality of cold cathode fluorescent lamps,” U.S. Patent 6 781 325, Aug. 24, 2004.
    [26]吳登和,具快速響應之高功因交/直流轉換器,國立成功大學電機工程學系碩士論文,民國八十九年五月。
    [27]ST Microelectronics, L6561, Enhanced transition mode power factor corrector, 1998.
    [28]S Yang, S. Lee, H. Kim, H. Lee, H. Mok, and G. Choe, “A new current balancing methods of CCFL for LCD TV backlight,” in proc. of IEEE PESC’06, 2006, pp. 1-5.
    [29]Y. Furukawa, K. Morita, and T. Yoshikawa, “A high efficiency 150W DC/DC converter,” in proc. of INTELEC’94, 1994, pp. 148-154.
    [30]B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC/DC conversion,” in proc. of IEEE APEC’02, 2002, pp.1108-1112.
    [31]B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. van Wyk, “Optimal design methodology for LLC resonant converter,” in proc. of IEEE APEC’06, 2006, pp.533-538.
    [32]H. Choi, “Analysis and design of LLC resonant converter with integrated transformer,” in proc. of IEEE APEC’07, 2007, pp.1630-1635.

    下載圖示 校內:2010-09-10公開
    校外:2010-09-10公開
    QR CODE