簡易檢索 / 詳目顯示

研究生: 陳西民
Tan, Arvin Joseff
論文名稱: 通過慣性變形研究奈米衛星中的Dzhanibekov 效應:一種單軸質量轉移方法
Investigation of the Dzhanibekov Effect in a Nanosatellite through Inertia Morphing: A Single-axis Mass-Shifting Approach
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 51
中文關鍵詞: 姿態控制Dzhanibekov 效應慣性變形質量轉移米衛星
外文關鍵詞: attitude control, dzhanibekov effect, inertia morphing, mass-shifting, nanosatellite
相關次數: 點閱:35下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Dzhanibekov 效應或稱之為網球拍效應,在傳統上被視為衛星系統中不良且無法控制的姿態行為.在飛行前,衛星的設計和製造使其質量與慣性分佈具有對稱性以避免這種情況。然而,影響或操縱這種在軌行為的能力具有潛在的姿態控制優勢,例如降低功率需求或加快迴轉機動。本篇論文分析並提出了一種通過質量轉移來減弱或操縱 Dzhanibekov 效應的方法。

    此分析通過以下步驟進行:首先,建立並推導衛星姿態的運動學和動力學模型。此步驟包括移動質量方程並考慮它們的非線性效應。其次,選擇模擬限制和假設,包括考慮一對小質量的單軸滑動配置。第三,應用數值和參數分析來分析和發現狀態參數之間的模式。最後,添加一個比例控制器,以進一步為移動質量引入逼真的運動,並觀察對姿態行為的影響。

    因此,通過模擬和分析,僅包括一對沿垂直於 1U 立方體衛星中間軸的單軸移動的 50 克質量,就可以減弱 Dzhanibekov 效應並轉化為更有用的進動。

    The Dzhanibekov effect, or the tennis racket effect, is classically seen as an undesirable and uncontrollable attitude behavior in satellite systems. To avoid it, satellites are designed and built to have symmetry in their mass/inertia distribution before flight. However, the ability to influence or manipulate this behavior in-orbit has potential attitude control benefits, such as reduced power requirements or faster slew maneuvers. In this thesis, an approach to attenuating or manipulating the Dzhanibekov effect through mass-shifting is analyzed and presented.

    This analysis was carried out with the following steps. First, the attitude kinematic and dynamic model of the satellite was built and derived. This step includes the shifting masses equations and accounts for their nonlinear effects. Second, simulation constraints and assumptions were chosen, including the consideration of the single-axis sliding configuration of a pair of small masses. Third, numerical and parametric analysis was applied to analyze and find patterns between state parameters. Lastly, a proportional controller was added to further introduce a realistic motion for the shifting masses and observe the effects in attitude behavior.

    Through simulation and analysis, it is shown that by just including a pair of 50-gram masses shifting along a single-axis perpendicular to the intermediate axis of a 1U Cubesat, the Dzhanibekov effect is attenuated and converted into a more useful precessing maneuver.

    摘要i Abstract ii Table of Contents iv List of Figures vi List of Tables viii List of Abbreviations ix List of Notations x Acknowledgements xi Chapter 1. Introduction 1 1.1. Review of Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2. The Dzhanibekov Effect 5 2.1. Reference Frames. . . . . . . . . . . . . . . . . . . . 5 2.1.1. Earth Centered Inertial Frame (ECI) . . . . . . . . . . . . . . . . . 5 2.1.2. Spacecraft Body-fixed Frame . . . . . . . . . . . . . . . . . . . . . 6 2.2. Mathematical and Physical Description . . . . . . . . . . . . . . . . . . . . 7 2.2.1. Attitude Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2. Angular Momentum Sphere and Kinetic Energy Ellipsoid . . . . . . 9 2.3. Disabling the Dzhanibekov Effect . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 3. Generalized Mass Shifting Model 15 3.1. Attitude Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1. Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.2. Quaternion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2. Attitude Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3. Attitude Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4. Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.1. Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.2. Study Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 4. Selecting the Mass Shifting Configuration 25 4.1. Motion along a single principal axis . . . . . . . . . . . . . . . . . . . . . 25 4.2. Motion along a single diagonal axis . . . . . . . . . . . . . . . . . . . . . 27 4.3. Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Chapter 5. Parametric Analysis 30 5.1. Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2. Shifting Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 6. Numerical Simulations and Discussions 35 6.1. Deploy-only Mass Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.2. Deploy and Retract Mass Shifting . . . . . . . . . . . . . . . . . . . . . . 42 6.3. Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Chapter 7. Conclusions and Future Work 48 7.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.2. Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References 50

    [1] C. Allard et al. General hinged rigid-body dynamics approximating first-order spacecraft solar panel flexing. Journal of Guidance, Control and Dynamics, 55(5):1290–1298, May 2018.
    [2] B. Atkins and E. Queen. Internal moving mass actuator control for mars entry guidance. Journal of Spacecraft and Rockets, 52(5):1294–1310, September 2015.
    [3] S. Chesi et al. Aerodynamic 3-axis attitude stabilization of a spacecraft by center of mass shifting. Journal of Guidance, Control and Dynamics, 40(7):1613–1626, July 2017.
    [4] M. Cook. Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control. Elsevier, 3rd edition, 2013.
    [5] de Ruiter, Damaren, and Forbes. Spacecraft Dynamics and Control: An Introduction. Wiley, 2013.
    [6] Mission Design Division. Small Spacecraft Technology State of the Art. NASA Ames Resaerch Center, 2015.
    [7] DZH Dynamics. DZH Dynamics company profile. https://www.dzhdynamics.com/. Accessed: 2021-07-04.
    [8] A. Gaude and V. Lappas. Design and structural analysis of a control moment gyroscope (cmg) actuator for cubesats. Journal of Spacecraft and Rockets, 7(5), May 2020.
    [9] GOMSpace. 6U Premium Cubesat. https://gomspace.com/6u-premium.aspx. Accessed: 2021-07-05.
    [10] L. He et al. A novel three-axis attitude stabilization method using in-plane internal mass-shifting. Aerospace Science and Technology, 92:489–500, June 2019.
    [11] K.D. Kumar and A. Zou. Attitude control of miniature satellites using movable masses. In Proceedings of the AIAA SpaceOps Conference, 2010.
    [12] Planet Labs. Planet labs company profile. https://www.planet.com/. Accessed: 2021-07-04.
    [13] Lumen Learning. Conservation of angular momentum. https: //courses.lumenlearning.com/boundless-physics/chapter/conservation-of-angular-momentum/. Accessed: 2021-07-02.
    [14] C. Markley. Fundamentals of Spacecraft Attitude and Control. Springer, 1st edition, 2014.
    [15] K. Ohashi et al. Motion planning in attitude maneuver using non-holonomic turns for a transformable spacecraft. In 28th Workshop on JAXA Astrodynamics and Flight Mechanics, 2018.
    [16] Cal Poly. Cubesat design specification rev 13. https://www.cubesat.org/s/cds_rev13_final2.pdf. Accessed: 2021-06-29.
    [17] SatCatalog. Honeybee Robotics CMG. https://www.satcatalog.com/component/microsat-cmg/. Accessed: 2021-07-04.
    [18] H. Schaub and J.L. Junkins. Analytical Mechanics of Space Systems. AIAA, 2nd edition, 2009.
    [19] M. Sidi. Spacecraft Dynamics and Control. Cambridge University Press, 1st edition, 1997.
    [20] Black Sky. Blacksky company profile. https://www.blacksky.com/. Accessed: 2021-07-04.
    [21] Alen Space. Alen Space company profile. https://alen.space/. Accessed: 2021-07-04.
    [22] Cubesatshop: Cube Space. CubeWheel reaction wheel. https://www.cubesatshop. com/wp-content/uploads/2016/06/CubeWheel_Specsheet_V1.1.jpg. Accessed: 2021-07-04.
    [23] Edwards T. and M. Kaplan. Automatic spacecraft detumbling by internal mass motion. AIAA Journal, 12(4):496–502, April 1974.
    [24] P. M. Trivailo and H. Kojima. Utilisation of the ’Dzhanibekov’s effect’ for the possible future space missions. In Proceedings of the ISTS-2017, 2017.
    [25] P.M. Trivailo and H. Kojima. Enhancement of the attitude dynamics capabilities of the spinning spacecraft using inertial morphing. The Aeronautical Journal, 15(1.6):1.6:1–1.6:64, October 2019.
    [26] L. Van Damme, P. Mardesic, and D. Sugny. The tennis racket effect in a three dimensional rigid body. arXiv, 15(1.6):1.6:1–1.6:64, February 2016.
    [27] R. Votel and D. Sinclair. Comparison of control moment gyros and reaction wheels for small earth-observing satellites. In Proceedings of the 26th Annual AIAA/USU Conference on Small Satellites, 2012.
    [28] J. Wertz. Spacecraft Attitude Determination and Control. Kluwer Academic, 1978.
    [29] J. Wertz et al. Space Mission Engineering: The New SMAD. Microcosm Press, 2nd edition, 2015.
    [30] T.A. Young. Attitude Dynamics and Control of a Spacecraft using Shifting Mass Distribution. PhD thesis, Pennsylvania State University, Dec 2012.

    下載圖示 校內:2023-07-20公開
    校外:2023-07-20公開
    QR CODE