| 研究生: |
許蕙蘭 Hsu, Hui-lan |
|---|---|
| 論文名稱: |
加瓜海脊海面風場與波浪場特性研究 Study on Wind and Wave Characteristics over Gagua Waters |
| 指導教授: |
高家俊
Kao, Chia-Chuen 李汴軍 Li, Beng-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 波高 、風應力 |
| 外文關鍵詞: | wind stress, wave height |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
海氣交互作用影響全球氣候的過程迄今仍是科學家ㄧ直努力研究的課題,而海氣交互作用中風場與波浪場是重要的研究項目。台灣夏季位於颱風路徑,近十年平均影響台灣本島之颱風有超過67%通過台灣東方加瓜海域。中央氣象局在該海域約5000公尺水深處佈放資料浮,作業化長期定時標觀測該海域風場與波浪場,作為颱風預警的準備。
本文利用該資料浮標站原始數據,分析該海域風場與波浪場之間的關係,作為提升預報準確度之參考。
分析2006年8月至11月的氣壓、風速、風向、波高、波向等資料結果顯示:在風場特性方面,風速小於4m/s時風應力隨風速增加而減少,而風速大於4m/s時風應力隨風速增加而增加,但在珊珊颱風期間風速增加,風應力維持一近似值,其可能是風速垂直分佈會受到波浪的影響而變形,因而影響風應力之計算有關。
根據風域法及波齡法分析風浪及湧浪出現機率,顯示風浪與湧浪比例受天氣系統影響甚巨。珊珊颱風影響範圍內及東北季風增強影響期間風浪比例幾乎為100%;而北方槽線與南方低壓帶影響期間湧浪比例為97%。由此可知,天氣系統較明顯時風浪比例大於湧浪;反之,當天氣系統較不明顯時湧浪比例大於風浪。
在風速與波高關係方面,在珊珊颱風影響時期,風速與波高相關性較好,相關係數達0.938;而微弱東北季風影響期間風速及波高相關係數較差為0.230。由此可知,天氣系統較明顯時風向有系統的變化,風浪比例較多,波高較高,風速與波高相關係數較好;反之,當天氣系統較不明顯時風向較混亂,湧浪比例較多,波高較低,風速及波高相關係數較差。
The impact of air-sea interaction on the global climate change, so far, is still a research subject. Among the atmospheric-Ocean processes, the wind and wave fields are an important role. It is about 67% typhoon cases occurred in the Pacific Ocean passing through Gagua Ridge Water, where in around 5000 meters depth. Thus the Central weather Bureau deployed a data buoy to study the characteristic of wind and wave over the Gagua Ridge water for the purpose of preparing for the typhoon warning.
This paper is to study the relationship between wind and wave fields
to promote the level of forecasting accuracy from the data buoy located in the Gagua Ridge Water from August to November, 2006. Firstly, the wind stress is decreasing following the wind speed under the wind speed is less than 4 m/s. Meanwhile, for wind speed is greater than 4 m/s, the wind stress is increasing following the wind speed. However, the wind stress maintains an approximation even though the wind speed is increasing during the typhoon Shanshan Period. The possible reason is the vertical wind profile is deformed by the effect of the wave near the sea surface.
Secondly, the probability of the wind wave and swell components based on the fetch area and wave age methods is calculated. The results show that the portion between the wind wave and swell is major influenced by the weather system. The wind wave is dominant in the apparent weather system. Conversely, the swell phenomena are dominant for the weather system less visible.
Thirdly, the wind speed and wave height is high correlated with the coefficient of 0.94 during the period typhoon Shanshan. The low correlation coefficient of 0.23 is appeared in the weak northerly monsoon. The results are also shown that when the weather system is a systematic changing in wind direction, wind waves are dominant and more high waves and with good correlation with wind speed. Conversely, when the weather system less visible than the chaos in the wind direction, swell components are dominant and wave height is lower and with poor correlation with the wind speed.
1. 李汴軍、徐月娟、高家俊、饒國清、施孟憲,“深海資料浮標作業能量建立”,海洋及水下科技季刊,第17卷第一期,第36-39頁,2007。
2. 林琿、陳戈,“利用TOPEX 衛星高度計觀測全球海面風速和有效波高的季節變化”,科學通報,第四十五卷第四期,第411-416頁,2000。
3. 侯和雄、劉正宗, “台灣海峽風浪特性之研究”, 第六屆海洋工程研討會論文集,第8-1~8-17頁,1982。
4. 高治平、梁乃匡, “台灣北部海域波候研究”, 第四屆海洋工程研討會論文集,第245-258頁,1980。
5. 郭金棟, “海岸工程”,中國水利工程學會,1974。
6. 莊甲子、興基、周哲民, “台灣北部海岸風浪特性之研究”,第十四屆海洋工程研討會論文集,第92-106頁,1992。
7. 黃煌煇、江文山、廖顯仁,“雲林海域之穩定風浪頻譜”,海洋工程學刊,第三卷第一期,第1-13頁,2003。
8. 曾若玄,“海面風應力與波高、風速、大氣穩定度之關係”,行政院國家科學委員會專題研究計畫成果報告,1995。
9. Anderson, R.J., “A study of wind stress and heat flux over the open ocean by the inertial-dissipation method”, J. Phys. Oceanogr, Volume 23, pp.2153-2161, 1993.
10. Anctil, F. and Donelan, M. A., “Air-water momentum flux observations over shoaling waves”, J. Phys. Oceanogr, Volume 26, pp. 541-558, 1996.
11. Bradley, E. F., Coppin, P. A., and Godfrey, J. S., “Measurements of sensible and latent heat fluxes in the western equatorial Pacific Ocean, J. Geophys. Res., Volume 96, pp.3375-3389, 1991.
12. Blake, R. A., “The dependence of wind stress on wave height and wind speed”, J. Geophys. Res., Volume 96, pp.20531-20545, 1991.
13. Dunckel, M., Hasse, L., Krugermeyer, L., Schriever, D and Wucknitz, J., “Turbulent fluxes of momentum, heat and water vapor in the atmospheric surface layer at sea during ATEX”, Boundary-Layer Meteor., Volume 6, pp.81-106, 1974.
14. Donelan, M. A., “Air-sea interaction in the sea”, Engineering Science, Volume 9, pp.239-292, 1990.
15. Geernaert, G. L., Larsen, S. E. and Hansen, F. “Measurements of the wind stress, heat flux, and turbulence intensity during strom conditions over the North Sea”, J. Geophysical Res., Volume 92, pp .13127-13139, 1987.
16. Krugermeyer, L., Grunewald, M. and Dunckel, M, “The influence of sea waves on the wind profile”,Boundary-Layer Meteor., Volume 14, pp.403-414, 1978.
17. Large, W.G., and Pond, S., “Open ocean momentum flux measurement in moderate to strong winds”, J. Phys. Oceanogr., Volume 11, pp.324-336,1982.
18. Large, W. G., Pond, S., “Sensible and Latent Heat Flux Measurements over the Ocean”, Journal of Physical Oceanography, Volume 12, Issue 5, pp. 464–482, 1982.
19. Lee, B. C., Wu, L.C., Doong, D.J., Kao, C.C., “Seasonal variations of wind and waves over Taiwan waters”, Mar Geophys Res, Volume 28, pp.183–190, 2007.
20. Maeda, A., Kazuki Uejima Toru Yamashiro, Sakurai, M., Ichikawa, H., Chaen, M., Taira, K., Mizuno, S., “Near inertial motion excited by wind change in a margin of the Typhoon 9019”, Journal of Oceanography, Volume 52, pp.375-388, 1996.
21. Margaret, Yelland and Peter, K. Taylor, “Wind stress measurements form the open ocean”, Journal of Physical Oceanography, Volume 26, pp. 541-558, 1996.
22. Moon, Il-Ju, Ginis, Isaac, Hara, Tetsu, Tolman, Hendrik L., Wright, C. W., Edward, J.Walsh, “Numerical simulation of sea surface directional wave spectra under hurricane wind forcing”, J. Phys. Oceanogr, Volume 33, pp. 1680–1706, 2003.
23. Neumann, G., Pierson, Willard J., “Principles of Physical Oceanography”, Prentice-Hall Englewood Cliffs, NJ, pp. 418-420, 1966.
24. Nieuwstadt, F. T. M, Dop, H. van, “Atmospheric Turbulence and Air Pollution Modeling”, D. Reidel Publishing Company, Dordrecht, pp. 21-25, 1982.
25. Paulson, C. A. , Leavitt, E. and Fleagle, R.G. , “Air-Sea Transfer of Momentum, Heat and Water Determined from Profile Measurements During BOMEX”, J. Phys. Oceanogr, Volume 2, Issue 4, pp. 487–497, 1972.
26. Panofsky, H. A., and Dutton, J. A., “Atmospheric Turbulence.”, Wiley, New York, 1984.
27. Smith, S. D., “Thrust-anemometer measurements of wind-velocity spectra and of Reynolds stress over a coastal inlet”, J. Marine Res., Volume 25, pp. 239–269, 1967.
28. Smith, S. D., “Wind Stress and Heat Flux over the Ocean in Gale Force Winds”, J. Phys. Oceanogr, Volume 10, Issue 5, pp. 709–726, 1980.
29. Smith, S. D., Anderson, R. J., Oost, W. A., Maat, K.N., DeCosmo, J., Katsaros, K. B., Davidson, K. L., Bumke, K., Hasse, L., and Cfadwick, H. M., “Sea surface wind stress and darg coefficients:The HEXOS results”, Boundary-Layer Meteor., Volume 60, pp.109-142, 1992.
30. Weissman, David E., Li, Fuk K., Lou, Shu-hsiang, Nghiem, Son V., Neumann, G., Mcintosh, Robert E., Carson, Steven C., Carswell, James R., Graber, Hans C., Jensen, Robert E., “Measurements of ocean surface stress using aircraft scatterometers”, Journal of Atmospheric and Oceanic Technology, Volume 14, pp.835-848, 1997.