| 研究生: |
卓采繡 Cho, Tsai-Hsiu |
|---|---|
| 論文名稱: |
微型獵能發電機應於智能流量計之設計與實現 Design and Implementation of a Micro Energy-Harvesting Generator for Smart Flow Meters |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching 黃柏維 Huang, Po-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 磁通調製 、磁通切換永磁電機 、微型水利獵能 、發電機 |
| 外文關鍵詞: | Flux Modulation, Flux Switching Permanent Magnet Machine, Micro Hydropower Energy Harvesting, Generator |
| 相關次數: | 點閱:38 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著物聯網技術的蓬勃發展,各種感測器與無線傳輸裝置的需求大幅增加,應用於智慧城市、智慧工廠及智慧農業等領域。作為物聯網系統的關鍵元件,感測器需要穩定的電力供應以進行數據收集與傳輸,但目前主要依賴電池或電網供電。電池壽命有限且需頻繁更換,不僅提升了維護成本,也對環境造成額外負擔。而電網供電則需額外配置降壓設備,進一步增加資源與成本的消耗。為解決此問題,獵能技術應運而生,通過收集周圍環境中的微型能量,例如太陽能、熱能、振動能及水流能,為感測器提供可持續的能源解決方案
本研究聚焦於智慧水錶的能源供應問題,旨在結合微水力發電技術與智慧水錶應用。由於智慧水錶中的感測器及傳輸設備主要依賴電池供電,其能源供應成為限制其廣泛應用的挑戰。為此,本研究設計並實現了一款磁通切換式永磁發電機(Flux Switching Permanent Magnet Generator, FSPMG),利用水流動能進行微型獵能發電。在設計過程中,通過負載分析確定發電機的工作點,依據設計流程完成幾何結構設計,並使用有限元素模擬驗證其性能。最終製作出實體發電機,並測試其輸出電壓、電流及功率是否符合設計需求。
With the rapid development of IoT technology, the demand for sensors and wireless transmission devices has grown significantly across applications such as smart cities, smart factories, and smart agriculture. Sensors, as critical components of IoT systems, require stable power supplies for data collection and transmission. However, current power solutions predominantly rely on batteries or grid power, both of which present challenges.
Batteries have limited lifespans and require frequent replacements, leading to increased maintenance costs and environmental impact. Grid power, on the other hand, necessitates additional step-down equipment, which consumes resources and adds to operational costs.
To address these challenges, energy-harvesting technologies have emerged as sustainable power solutions by capturing micro-energy from the environment, including solar, thermal, vibrational, and hydropower energy. This study focuses on the energy supply challenge in smart water meters by integrating micro-hydropower generation technology. Specifically, a flux switching permanent magnet generator was designed and implemented to harvest energy from water flow.
The design process involved conducting a load analysis to determine the generator's operating point, optimize the geometric structure, and validate the performance through finite element simulations. A prototype generator was subsequently manufactured, and its output voltage, current, and power were tested to verify compliance with design requirements.
[1] “IoT Sensors Market Size, Share, and Trends 2024 to 2033,” Precedence Research https://www.precedenceresearch.com/iot-sensors-market
[2] Sravanthi Chalasani and James M. Conrad, "A Survey of Energy Harvesting Sources for Embedded Systems," IEEE SoutheastCon 2008, Huntsville, AL, USA, April 3-6, 2008.
[3] D. Hoffmann, A. Willmann, R. Göpfert, P. Becker, and B. Folkmer, Y. Manoli, "Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications," Journal of Physics Conference Series, vol. 476, pp. 12083, Dec. 4, 2013.
[4] 「臺灣2050淨零排放路徑及策略總說明」,臺灣發展委員會https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76
[5] 弓銓企業股份有限公司https://www.ems.com.tw/zh-tw
[6] “Energy Harvesting Market – Forecast (2024-2030),” Linkedin, https://www.linkedin.com/pulse/energy-harvesting-market-forecast2024-2030-ajay-sharma-sl8oc
[7] H. Akinaga, "Recent Advances and Future Prospects in Energy Harvesting Technologies," Jpn. J. Appl. Phys., vol. 59, no. 11, Nov. 2020.
[8] L. G. Tran, H. K. Cha and W. T. Park, "RF Power Harvesting: A Review on Designing Methodologies and Applications," Micro Nano Syst. Lett., vol. 5, no. 14, pp. 1-16, Dec. 2017.
[9] Y. M. Choi, M. G. Lee and Y. H. Jeon, "Wearable biomechanical energy harvesting technologies," Energies, vol. 10, no. 10, pp. 1483, Sep. 2017.
[10] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes and T. C. Green, "Energy Harvesting from Human and Machine Motion for Wireless Electronic Devices," Proc. IEEE, vol. 96, no. 9, pp. 1457-1486, Sep. 2008.
[11] M. Cheng, W. Hua, J. Zhang and W. Zhao, "Overview of Stator-Permanent Magnet Brushless Machines," in IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5087-5101, Nov. 2011.
[12] Y. F. Liao, F. Liang and T. A. Lipo, "A Novel Permanent Magnet Motor with Doubly Salient Structure," in IEEE Transactions on Industry Applications, vol. 31, no. 5, pp. 1069-1078, Sept.-Oct. 1995.
[13] Y. Du, Y. Sun, X. Zhu, M. Cheng, F. Xiao, Y. Sun, "Comparison of Doubly Salient Permanent Magnet Machines with E-shaped and π-shaped Stator Iron Core Segments," 2015 IEEE International Magnetics Conference (INTERMAG), Beijing, China, May 11-5, 2015.
[14] R. P. Deodhar, S. Andersson, I. Boldea and T. J. E. Miller, "The Flux-Reversal Machine: a New Brushless Doubly-Salient Permanent-magnet Machine," IEEE Transactions on Industry Applications, vol. 33, no. 4, pp. 925-934, July-Aug. 1997.
[15] W. Hua, M. Cheng, Z. Q. Zhu and D. Howe, "Design of Flux-Switching Permanent Magnet Machine Considering the Limitation of Inverter and Flux-Weakening Capability," Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA, Oct. 8-12, 2006.
[16] M. Cheng, K. T. Chau and C. C. Chan, "Static Characteristics of a New Doubly Salient Permanent Magnet Motor," IEEE Transactions on Energy Conversion, vol. 16, no. 1, pp. 20-25, March 2001.
[17] K. T. Chau, Qiang Sun, Ying Fan and Ming Cheng, "Torque Ripple Minimization of Doubly Salient Permanent-magnet Motors," IEEE Transactions on Energy Conversion, vol. 20, no. 2, pp. 352-358, June 2005.
[18] X. Zhu and W. Hua, "An Improved Configuration for Cogging Torque Reduction in Flux-Reversal Permanent Magnet Machines," IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-4, June 2017.
[19] K. Yang, F. Zhao, Y. Wang and Z. Bao, "Consequent-Pole Flux Reversal Permanent Magnet Machine with Halbach Array Magnets in Rotor Slot," IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-5, Feb. 2021.
[20] E. Hoang, H. B. Ahmed, J. Lucidarme. "Switching flux permanent magnet polyphased synchronous machines," European Conference on Power Electronics and Applicaitons, Trondheim, Norvège, September 1997.
[21] 吳昇澤,「基於3D列印之創新型永磁馬達與扇葉一體式設計」,國立成功大學電機系碩士論文,2019。
[22] T. Sanislav, G. D. Mois, S. Zeadally and S. C. Folea, "Energy Harvesting Techniques for Internet of Things (IoT)," IEEE Access, vol. 9, pp. 39530-39549, 2021.
[23] C. T. Pan, Y. L. Lin, C. K. Yen and Z. H. Liu, "Analysis of a flux-switching permanent magnet generator for small-scale water power systems," 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, May 13-17, 2017.
[24] W. Hua, M. Cheng, Z. Q. Zhu and D. Howe, "Analysis and Optimization of Back EMF Waveform of a Flux-Switching Permanent Magnet Motor," IEEE Transactions on Energy Conversion, vol. 23, no. 3, pp. 727-733, Sept. 2008.
[25] M. Lehr, D. Dietz and A. Binder, "Electromagnetic design of a permanent magnet Flux-Switching-Machine as a direct-driven 3 MW wind power generator," Proc. IEEE Int. Conf. Ind. Technol., vol. 2018, pp. 383-388, February 2018.
[26] L. Shao, W. Hua, N. Dai, M. Tong and M. Cheng, "Mathematical modeling of a 12-phase flux-switching permanent-magnet machine for wind power generation," IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 504-516, 2016.
[27] W. Ding and S. Li, "Maximum Ratio of Torque to Copper Loss Control for Hybrid Excited Flux-Switching Machine in Whole Speed Range," IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 932-943, 2019.
[28] P. Wang, W. Hua, G. Zhang, B. Wang and M. Cheng, "Principle of flux-switching PM machine by magnetic field modulation theory part I: Back-EMF generation," IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 2370-2379, Mar. 2022.
[29] “Sintered Neodymium-Iron-Boron Magnets,” Arnold Magnetic Technologies, https://www.arnoldmagnetics.com/wp-content/uploads/2017/11/N40H-151021.pdf
校內:2030-01-06公開