簡易檢索 / 詳目顯示

研究生: 李佩珈
Li, Pei-Chia
論文名稱: 利用耦合尤拉-拉格朗日模擬包盛社山崩之研究
Numerical Study of the Bao-Sheng-She Landslide using Coupled Eulerian-Lagrangian Approach
指導教授: 洪瀞
Hung, Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 62
中文關鍵詞: 耦合尤拉-拉格朗日山崩數值方法有限元素法
外文關鍵詞: Coupled Eulerian-Lagrangian, Landslide, Abaqus, Numerical Study, FEM
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2009 年 8 月 8 日,莫拉克颱風侵襲臺灣並帶來大量的降雨,整個颱風期間的累積降雨量幾乎達到臺灣的年降雨量,而此次颱風也造成許多自然災害。其中,位於臺東縣金峰鄉的包盛社發生大規模的崩塌。此崩塌面積約為250公頃,整個崩塌的土體量超過1000萬立方公尺,土體阻塞了下游的河道,形成堰塞湖。
    本研究利用耦合尤拉-拉格朗日法來模擬包盛社崩塌。此方法是近年來用於解決工程問題的一種數值方法,它避免了傳統數值方法使用拉格朗日分析框架的缺點,像是:網格扭曲和變形;耦合尤拉-拉格朗日法結合了尤拉和拉格朗日分析的優點,除了避免網格扭曲的發生,同時也大幅減少了模擬時的運算時間。
    而本研究區域包盛社的地質為畢祿山層,其以板岩、千枚岩及變質砂岩組成,其中板岩為最大占比,因此本研究以板岩材料為模擬的材料參數,討論了不同材料參數(內聚力、摩擦角和楊氏模數)對模擬結果(速度、沉積範圍和崩塌時長)的影響。根據不同的材料參數,總共有 27 種參數組合,並將這些參數組合的模擬結果與前人的文獻進行比較。最後本研究發現凝聚力是對整個模擬結果影響最大的材料參數。

    On August 8, 2009, Typhoon Morakot brought heavy rain and induced many natural hazards. Among them, a large-scale landslide occurred in Bao-Sheng-She, Jin-Feng Township, Taitung County, Taiwan. The collapsed area of the Bao-Sheng-She landslide was 250 hectares, and the sliding mass was more than 10 million cubic meters.
    In this study, the Coupled Eulerian-Lagrangian approach was used to simulate the Bao-Sheng-She landslide. This technique is a numerical method that has been used to solve engineering problems in recent years. It avoids the disadvantages of the traditional Lagrangian analysis framework, such as mesh distortion and deformation. The CEL approach combines the advantages of the Eulerian and Lagrangian analysis.
    The study discusses the effect of different material parameters (cohesion, friction angle, and Young's Modulus) on the simulation results (velocity, deposition range, and collapse duration) of the landslide. A total of 27 combinations of the parameters were evaluated and compared with each other and to previous literature studies. Based on this study, cohesion was found to be the most influential parameter with respect to landslide velocity, deposition, and sliding time.

    DECLARATION III ABSTRACT IV ACKNOWLEDGEMENT VI TABLE OF CONTENTS VII LIST OF TABLES IX LIST OF FIGURES X CHAPTER 1 INTRODUCTION 1 1.1 Research Motivation and Purpose 1 1.2 Research Framework and Procedure 2 CHAPTER 2 LITERATURE REVIEW 4 2.1 Definition of Landslides 4 2.1.1 Type of Landslides 4 2.1.2 Causes of Landslides 6 2.1.3 Landslides Prevention and Mitigation 6 2.2 Landslides Cases 7 2.2.1 Yan-Chao Catastrophic Landslide in Taiwan 7 2.2.2 Aso-Bridge Landslide in Japan 7 2.2.3 The Bao-Sheng-She Landslide in Taiwan 8 2.3 Numerical Methods 10 2.3.1 Coupled Eulerian-Lagrangian (CEL) technique 11 CHAPTER 3 METHODOLOGY 12 3.1 Finite Element Software Introduction 12 3.1.1 Algorithms 12 3.2 Coupled Eulerian-Lagrangian Method 15 3.2.1 Algorithms of CEL 17 3.2.2 The Stress and Strain Relation 19 CHAPTER 4 CASE AND MODEL VALIDATION 21 4.1 Research Case 21 4.2 Model Setting 23 4.2.1 Part 23 4.2.2 Size 25 4.2.3 Assembly 26 4.2.4 Step 27 4.2.5 Load and Boundary Condition 27 4.2.6 Mesh Condition 28 4.2.7 Job Setting 29 4.3 Model Validation 30 4.3.1 Interaction 30 4.3.2 Material Parameters 31 4.3.3 Material and Interaction Validation 33 CHAPTER 5 RESULTS AND DISCUSSION 37 5.1 Velocity 39 5.2 Deposition 46 5.3 Sliding Time 51 5.4 Discussion 52 CHAPTER 6 CONCLUSION 53 REFERENCES 54 APPENDIX 58

    [1] Xingmin Meng, “landslide,” Encyclopedia Britannica, February 03, 2022. https://www.britannica.com/science/landslide
    [2] Yang Shurong and Lin Zhongzhi, “Landslide Classification in Common Use in Taiwan,” Aug. 2011. (In Chinese)
    [3] D. J. Varnes, “Slope movement types and processes,” Special Report 176: Landslides: Analysis and Control (Eds: Schuster, R. L. & Krizek, R. J.), Transportation and Road Research Board, National Academy of Science, Washington D. C., pp. 11–33, 1978.
    [4] O. Hungr, S. Leroueil, and L. Picarelli, “The Varnes classification of landslide types, an update,” Landslides, vol. 11, no. 2. Springer Verlag, pp. 167–194, 2014. doi: 10.1007/s10346-013-0436-y.
    [5] D. M. Cruden and D. J. Varnes, “Landslide Types and Processes,” Transportation Research Board, National Academy of Sciences, vol. 247, pp. 36–75, Jan. 1996.
    [6] U.S. Department of the Interior and U.S. Geological Survey, “Landslide Types and Processes,” U.S.A, Jul. 2004.
    [7] Chen Hong-Yu, “Engineering geological characteristics of landslides in Taiwan,” SINO-GEOTECHNICS, vol. 79, pp. 59–70, 2000. (In Chinese)
    [8] Hung Ru-Jiang, “Destruction and Stability of Consequential Slopes,” SINO-GEOTECHNICS, vol. 94, pp. 5–18, 2002. (In Chinese)
    [9] Hung Ru-Jiang, “Slope Disaster Prevention,” Sinotecf, vol. 46, pp. 7–15, 2009. (In Chinese)
    [10] C. H. Lin, C. Hung, M. C. Weng, M. L. Lin, and R. Uzuoka, “Failure mechanism of a mudstone slope embedded with steep anti-dip layered sandstones: case of the 2016 Yanchao catastrophic landslide in Taiwan,” Landslides, vol. 16, no. 11, pp. 2233–2245, Nov. 2019, doi: 10.1007/s10346-019-01250-3.
    [11] C. Hung, G. W. Lin, H. S. Syu, C. W. Chen, and H. Y. Yen, “Analysis of the Aso-Bridge landslide during the 2016 Kumamoto earthquakes in Japan,” Bulletin of Engineering Geology and the Environment, vol. 77, no. 4, pp. 1439–1449, Nov. 2018, doi: 10.1007/s10064-017-1103-7.
    [12] C.-H. Tang and G.-W. Lin, “Modelling the coseismic landslide using coupled Eulerian-Lagrangian approach: a case study of the 2016 Aso-Bridge landslide, Japan,” National Cheng Kung University, Taiwan, 2020. (In Chinese)
    [13] F. B. Taitung Forest Area Management Office and NCKU Research and Development Foundation, “Emergency assessment of Baoshengshe dammed lake in Taimali River and short, medium and long-term countermeasures plan for the whole basin,” 2010. (In Chinese)
    [14] H. Su and Y. Pan, “Reconstruction of Rainfall-induced Landslide Dam by Numerical Simulation-The Barrier Lake in Taimali river as an Example,” National Chiao Tung University, Taiwan, 2013. (In Chinese)
    [15] C.-M. Huang and G.-W. Lin, “Combination of three-dimensional discrete element method and geological model to simulate the migration of Taimali landslide, Xinmo landslide and Shezailiao landslide-prone slope,” National Cheng Kung University, Taiwan, 2019. (In Chinese)
    [16] G. Qiu, S. Henke, and J. Grabe, “Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations,” Comput Geotech, vol. 38, no. 1, pp. 30–39, Jan. 2011, doi: 10.1016/j.compgeo.2010.09.002.
    [17] C. H. Lin, C. Hung, and T. Y. Hsu, “Investigations of granular material behaviors using coupled Eulerian-Lagrangian technique: From granular collapse to fluid-structure interaction,” Comput Geotech, vol. 121, May 2020, doi: 10.1016/j.compgeo.2020.103485.
    [18] M. T. Islam, J. N. Reddy, and R. Righetti, “A model-based approach to investigate the effect of elevated interstitial fluid pressure on strain elastography,” Phys Med Biol, vol. 63, no. 21, Oct. 2018, doi: 10.1088/1361-6560/aae572.
    [19] “Abaqus/CAE User’s Manual Abaqus 6.11 Abaqus/CAE User’s Manual.”
    [20] R. W. Clough, “Original formulation of the finite element method,” Finite Elements in Analysis and Design, vol. 7, pp. 89–101, Jul. 1990.
    [21] T. Pucker and J. Grabe, “Numerical simulation of the installation process of full displacement piles,” Comput Geotech, vol. 45, pp. 93–106, Sep. 2012, doi: 10.1016/j.compgeo.2012.05.006.
    [22] Te-Wei Cheng and G.-W. Lin, “Analysis of the Progressive Processes of Slope Failure induced by Rainfall with the Finite Element Methods,” National Cheng Kung University, Taiwan, 2021. (In Chinese)
    [23] K. Lee and S. Jeong, “Analysis of the impact force of debris flows on a check dam by using a coupled Eulerian-Lagrangian (CEL) method,” Comput Geotech, vol. 116, Dec. 2019, doi: 10.1016/j.compgeo.2019.103214.
    [24] K. Lee and S. Jeong, “Large deformation FE analysis of a debris flow with entrainment of the soil layer,” Comput Geotech, vol. 96, pp. 258–268, Apr. 2018, doi: 10.1016/j.compgeo.2017.11.008.
    [25] D. J. Benson, “An implicit multi-material Eulerian formulation,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng, vol. 48, pp. 475–499, Sep. 2000.
    [26] D. J. Benson and S. Okazawa, “Contact in a multi-material Eulerian finite element formulation,” Comput Methods Appl Mech Eng, vol. 193, no. 39-41 SPEC. ISS., pp. 4277–4298, Oct. 2004, doi: 10.1016/j.cma.2003.12.061.
    [27] X. Chen, L. Zhang, L. Zhang, Y. Zhou, G. Ye, and N. Guo, “Modelling rainfall-induced landslides from initiation of instability to post-failure,” Comput Geotech, vol. 129, Jan. 2021, doi: 10.1016/j.compgeo.2020.103877.
    [28] R. Dey Ã, B. Hawlader Ã, R. Phillips, and K. Soga, “Large deformation finite-element modelling of progressive failure leading to spread in sensitive clay slopes.” [Online]. Available: http://dx.doi.org/10.1680=geot.14.P.193]
    [29] J. F. Labuz and A. Zang, “Mohr-Coulomb failure criterion,” Rock Mech Rock Eng, vol. 45, no. 6, pp. 975–979, Nov. 2012, doi: 10.1007/s00603-012-0281-7.
    [30] M. Li and S. Hsu, “Study of Topping Failure of Rock Slopes along Taiwan Highway No.14,” Chaoyang University of Technology, Taiwan, 2003. (In Chinese)

    下載圖示 校內:2025-09-27公開
    校外:2025-09-27公開
    QR CODE