簡易檢索 / 詳目顯示

研究生: 陳智揚
Chen, Chih-Yang
論文名稱: 定翼型無人機於測繪與直接地理定位之精度分析
Positioning Accuracy Analysis of a Fixed-Wing UAV for Mapping and Direct Georeferencing
指導教授: 饒見有
Rau, Jiann-Yeou
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 55
中文關鍵詞: 無人機直接地理定位製圖
外文關鍵詞: UAV, Direct Georefercing, Mapping
相關次數: 點閱:124下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 與有人機相比,利用無人機(Unmanned Aerial Vehicle, UAV)進行空中拍照獲取地面影像,其成本較低廉、機動性與彈性也相對較高。然而無人機受到載重、飛行時間與穩定性之限制,所能攜帶的感測器也相對必須較小、較輕,因此影像涵蓋之地面範圍比傳統大像幅航照影像小很多,在相同面積與重疊百分比要求下,拍攝的影像數量將大幅增加,會增加空三平差之時間與困難度。此外,在山區拍攝時,可能整張影像的內容皆為樹林,會導致重複性紋理、陰影與均調區域等問題,容易造成連結點自動匹配失敗或不可靠,進而無法以傳統空中三角測量求解影像之外方位參數。由於台灣山區每逢豪雨就會造成地質災害,因此本研究提出在定翼型無人機上裝載戰術級慣性導航儀(Inertial Measurement Unit, IMU)與雙頻全球定位系統(Global Postioning System, GPS)接收器,透過直接地理定位(Direct Georeferencing, DG)迅速解算影像之外方位參數,以便在災後快速提供災情空間資訊給災防單位。本研究在AL-40 UAV上裝載NovAtel SPAN-CPT和Canon EOS 5D Mark II數位相機分別作為定位定向與影像感測器。系統率定包括使用室內率定場相機內方位參數之率定,以及使用地面控制場與二階段率定法解算IMU與相機之軸角與固定臂參數。本文將說明整個率定作業程序與誤差分析成果,研究成果顯示在1200公尺航高,以直接地理定位解算相片外方位參數,再以前方交會檢驗其定位準確度,可得到小於1公尺之水平方向誤差與小於4公尺之高程誤差。而有/無利用地面控制點進行空三平差產製數值表面模型(Digital Surface Model, DSM)後其高程誤差分別約40公分與1公尺。成果顯示本系統之絕對定位精度可應用在災後快速提供災情範圍之數化與測量,若有地面控制點及災害前後之影像,甚至可推估崩塌地之土石流失與堆積量。

    Comparing with manned airplane, an Unmanned Aerial Vehicle (UAV) is a more flexible with lower cost platform for aerial photo acquisition. However, its payload, endurance time, and flight height is comparably lower and generally only small format consumer grade digital camera can be carried out. That means, its footprint coverage will be smaller and more images are necessary to cover the same area, and may contain only forest within one image when flying over the mountainous area. Thus, it is a difficult to utilize the conventional aerial triangulation (AT) procedure to obtain the images’ exterior orientation parameters (EOPs) that requires uniform distributed tie-points within the images. Because, it is difficult to match tie-points automatically due to the image context has repetitive pattern, shadow, and homogeneous area. Since the geological hazard happened frequently after heavy rainfall in Taiwan mountainous area, it is thus suggested to utilize a tactical grade IMU together with a dual-frequency GPS antenna for direct georeferencing (DG) particularly when fast response for hazard investigation is required. In this paper, a fixed-wing UAV equipped with a SPAN-CPT and a Canon EOS 5D Mark II camera are used for image acquisition. An in-door camera calibration field is designed for the calibration of interior orientation parameters (IOPs) and an outdoor calibration field with two-step boresight and lever-arm calibration procedure is applied for the purpose of DG. Detail about the system calibration procedure and accuracy analyses will be provided in the paper. Experimental results show that for flying height at 1200-m after DG and checking with GCPs using space intersection, the RMSE in planimetric and vertical directions are less than 1-m and 4-m, respectively. In the meantime, the RMSE of the generated DSMs through ground controlled and non-ground controlled but GPS-supported aerial triangulation are 0.4-m and 1-m, respectively. It is estimated that the positing accuracy is high for the purpose of fast hazard investigation, e.g. digitization and measurement. If two image datasets can be acquired before and after disaster, the landslide loss and deposit volume can also be estimated.

    摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 viii 圖目錄 ix 第 1 章 緒論 1 1.1. 研究背景 1 1.2. 傳統空三與直接地理定位 2 1.3. 研究目的及流程 4 1.4. 論文架構 5 第 2 章 文獻回顧 7 2.1. 無人機種類 7 2.2. 影像感測器 8 2.3. 定位定向裝置 9 2.4. 無人機直接地理定位系統率定 12 第 3 章 研究儀器及設備 14 3.1. 載具結構 14 3.2. 影像感測器 16 3.3. GPS/IMU整合式定位定向感測器 17 3.4. 影像拍攝控制器 (Automatic Image Capture System, AICS) 18 3.5. 飛控電腦 19 第 4 章 研究方法 20 4.1. 相機率定 20 4.2. 無人機地面率定場設置及控制點量測 22 4.2.1. e-GPS量測 22 4.2.2. GPS靜態觀測 23 4.2.3. 基準轉換 24 4.3. 無人機飛行軌跡解算 24 4.4. 連結點匹配 25 4.5. 空三平差計算 25 4.5.1. 自由網平差 26 4.5.2. 強制附合平差 27 4.5.3. GPS輔助空三解算 27 4.6. 數值表面模型與正射影像製作 28 4.7. 直接地理定位解算影像外方位參數 28 4.8. 兩階段軸角與固定臂率定 30 第 5 章 實驗成果 32 5.1. 相機率定成果 32 5.2. eGPS測量時間對定位精度之影響 33 5.3. 控制點與GPS基站解算成果 35 5.4. 網型內部精度檢核與GPS輔助空三解算成果 36 5.5. 軸角與固定臂率定內部精度分析 40 5.6. 直接地理定位前方交會三維定位精度分析與穩定性測試 41 5.7. 產製之數值表面模型與空載光達掃描成果比較 42 5.8. 立體測繪y視差及定位誤差分析 45 5.9. 直接地理定位之正射影像製作及誤差分析 47 第 6 章 結論與展望 49 誌謝 51 參考文獻 52

    李育華 (2010),車載移動式製圖系統之系統率定及其直接地理定位之效能分析,國立成功大學測量及空間資訊學系碩士論文。
    鄭蘭娟 (2010),發展數位地圖嵌入式 INS/GPS 導航演算法,成功大學測量及空間資訊學系碩士論文。
    Adams, S. M., Friedland, C. J., 2011. A Survey of Unmanned Aerial Vehicle (UAV) Usage for Imagery Collection in Disaster Research and Management. In Proceedings of the Ninth International Workshop on Remote Sensing for Disaster Response, Stanford, CA, USA. pp.15-16.
    Bäumker, M., Heimes, F. J., 2001. New Calibration and Computing Method for Direct Georeferencing of Image and Scanner Data Using the Position and Angular Data of an Hybrid Inertial Navigation System. OEEPE Workshop, Integrated Sensor Orientation, Sep. 17-18.
    Cramer, M., Stallmann, D., 2002. System Calibration for Direct Georeferencing. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/A), pp.79-84.
    El-Sheimy, N., 1996. The development of VISAT-a mobile survey system for GIS applications. Ph.D. thesis, Department of Geomatics Engineering, the University of Calgary, Canada.
    Forstner, W., Steffen, R., 2007. Online geocoding and evaluation of large scale imagery without GPS. Photogrammetric Week, 07, pp.243-253.
    Fraser, C. S., 1997. Digital camera self-calibration. ISPRS Journal of Photogrammetry and Remote Sensing, 52(4), pp.149-159.
    Ip, A.W.L., El-Sheimy, N., Hutton, J., 2004. Performance analysis of integrated sensor orientation. Proceedings of the International Archives of Photogrammetry and Remote Sensing, XXth ISPRS Congress, Commission V, Vol. XXXV, Part B5, Istanbul, Turkey, pp.797-802.
    Jaakkola, A., Hyyppä, J., Kukko, A., Yu, X., Kaartinen, H., Lehtomäki, M., Lin, Y., 2010. A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS journal of Photogrammetry and Remote Sensing, 65(6), pp.514-522.
    Jhan, J.P., Rau, J.Y., Lin, C.C., Shao, Y.C., 2011. Automatic Tie-point Matching for Semi-automatic Photo-triangulation. 第三十屆測量及空間資訊研討會,國立中興大學,台中市,台灣。
    Kelcey, J., Lucieer, A., 2012. Sensor Correction and Radiometric Calibration of a 6-band Multispectral Imaging Sensor for UAV Remote Sensing. Volume XXXIX-B1, 2012 XXII ISPRS Congress, Melbourne, Australia.
    Laliberte, A.S., Goforth, M.A., Steele, C.M., Rango, A., 2011. Multispectral Remote Sensing from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland Environments. Remote Sensing, 3 (11) pp.2529-2551.
    Lambers, K., Eisenbeiss, H., Sauerbier, M., Kupferschmidt, D., Gaisecker, T., Sotoodeh, S., Hanusch, T., 2007. Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru. Journal of Archaeological Science, 34(10), pp.1702-1712.
    Lowe, D. G., 2004. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), pp.91-110.
    Mostafa, M. M., 2001. Boresight calibration of integrated inertial/camera systems. In Proc. International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation–KIS, Banff, Canada.
    Niethammer, U., James, M. R., Rothmund, S., Travelletti, J., Joswig, M., 2012. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, pp.2-11.
    Rau, J. Y., Habib, A. F., Kersting, A. P., Chiang, K. W., Bang, K. I., Tseng, Y. H., Li, Y. H., 2011. Direct sensor orientation of a land-based mobile mapping system. Sensors, 11(7), pp.7243-7261.
    Rau, J.Y., Jhan, J.P., Rau, R.J., 2013. An Object Oriented Multi-scale Multi-stage Landslide Recognition Scheme from Multi-spectral Optical Imagery and DEM. IEEE Transaction on Geoscience and Remote Sensing, No. 99.
    Rau, J. Y., Chen, L. C., Liu, J. K., Wu, T. H., 2007. Dynamics monitoring and disaster assessment for watershed management using time-series satellite images. Geoscience and Remote Sensing, IEEE Transactions on, 45(6), pp.1641-1649.
    Rau, J. Y., Yeh, P. C. 2012. A Semi-Automatic Image-Based Close Range 3D Modeling Pipeline Using a Multi-Camera Configuration. Sensors, 12(8), pp.11271-11293.
    Škaloud, J., 1999. Optimizing georeferencing of airborne survey systems by INS/DGPS. Ph.D. Thesis, Department of Geomatics Engineering, University of Calgary, Canada.
    Strecha, C., Tuytelaars, T., Van Gool, L., 2003. Dense matching of multiple wide-baseline views. Proceedings of 9th IEEE International Conference on Computer Vision, Vol.2, pp.1194-1201.
    Strecha, C., Fransens, R., Van Gool, L., 2004. Wide-baseline stereo from multiple views: a probabilistic account. In Computer Vision and Pattern Recognition. Proceedings of the 2004 IEEE Computer Society Conference, Vol. 1, pp.I-552.
    Titterton, D., Weston, J.L., 2004. Strapdown Inertial Navigation Technology, 2nd Edition. Institution of Electrical Engineering and Technology, England & Wales.
    Tola, E., Strecha, C., Fua, P., 2012. Efficient large-scale multi-view stereo for ultra high-resolution image sets. Machine Vision and Applications, 23(5), pp.903-920.
    Strecha, C., Van Gool, L., Fua, P., 2008. A Generative Model for True Orthorectification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3a. Beijing.

    下載圖示 校內:立即公開
    校外:2014-09-10公開
    QR CODE