簡易檢索 / 詳目顯示

研究生: 梁嘉鏘
Leung, Ka-Cheong
論文名稱: 大腿肌肉分布特徵量化之最佳化電流圖型模擬研究
A Simulation Study of Optimizing Current Patterns for Thigh Muscle Distribution Characterization
指導教授: 鄭國順
Cheng, Kuo-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 48
中文關鍵詞: 電阻抗成像肌少症最佳電流
外文關鍵詞: Sarcopenia, Electrical impedance tomography, Best current pattern
相關次數: 點閱:74下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據世界衛生組織報告全球人口老化問題越趨嚴重,並預計60歲以上人口比例將在2015年至2050年間翻倍從12%增長至22%,因此需要增加對於老年疾病的關注。肌少症(Sarcopenia)被定義為一種以非正常速度肌肉衰減的現象,雖然好發於年老病患但年齡並非此症狀發生的唯一因素。目前篩檢肌少症的方法多為對病患進行一系統的體能評估,而要更精準的確診檢驗則需要較昂貴的檢測儀器如雙能量X光吸光式測定儀(DXA),因此我們希望透過這個研究提出以電阻抗成像作為初期篩檢肌少症的工具。電阻抗成像(EIT)是一種非侵入式的成像方法,其利用注入電流至表面電極並量測相應的表面電壓以得到內部的電導系數分佈資訊,由於其成像快速以及輕便的特性使其在臨床上常用於實時肺功能監測。目前市面上主流的電阻抗儀器使用相鄰法(neighbouring method)作為量測方法,透過注入電流至兩兩成對的電極以及量測其電壓得到影像。但近期有文獻指出相鄰法對於邊界的物體導電率改變雖然較好,但對於中心物體的改變則表現較差,因此有作者提出利用解析解得出的trigonometric current作為刺激電流可以得到更好的影像。本研究使用此作者提出的方法嘗試驗證不同的刺激電流對於物體在不同位置的特徵偵測有何不同,並提出各個分佈的最佳刺激電流。

    According to the World Health Organization (WHO), the proportion of the global population aged 60 and above is projected to nearly double from 12% to 22% between 2015 and 2050, leading to a corresponding increase in age-related diseases. Sarcopenia, characterized by the abnormal deterioration of muscle function, is one such condition associated with aging, although not exclusively. Presently, the screening process for sarcopenia relies on multiple sets of questionnaires, with confirmation requiring expensive and large-scale equipment like dual-energy X-ray absorptiometry (DXA). Hence, the objective is to explore a more cost-effective and dependable alternative to identify potential sarcopenia patients within the population.
    Electrical Impedance Tomography (EIT) is a non-invasive imaging technique capable of detecting changes in conductivity distribution within the body, thereby enabling the tracking of functional and structural alterations in internal organs. However, the conventional method of adjacent current injection and paired measurement has faced challenges due to its limited sensitivity in detecting inhomogeneities within the central region. Consequently, researchers in the field of EIT have proposed an alternative approach known as the adaptive current pattern or the optimal current pattern.
    The objective of this study is to investigate the feasibility of applying optimal current pattern in EIT for characterizing morphological changes in muscle distribution. The distinguishability on small conductivity changes of the proposed method and that of the conventional adjacent current pattern are compared. Also, finite element meshes are built using reference of the MRI image to build an anatomical phantom model.
    The experimental results show that the optimal current pattern yields the highest distinguishability. From the tank phantom studies, we can confirm that the best current pattern on concentric disc object converge to a sinusoidal pattern, which agrees with the analytical solution. We have also simulated the sarcopenic changes in muscle distribution such as fatty infiltration and muscle atrophy and find that the optimal current pattern does function well in both cases. The proposed optimal current pattern can maximize the sensitivity of impedance changes in individual patients that can be correlated to morphological changes in muscle distribution, improving spatial resolution in the generated images.

    中文摘要 i Abstract ii LIST OF TABLES vii LIST OF FIGURES viii Chapter 1. Introduction 1 1.1. Background 1 1.2. Sarcopenia 1 1.2.1. Definition 1 1.2.2. Epidemiology 3 1.2.3. Diagnosis 4 1.2.4. Sarcopenia in Asia 7 1.3. Motivation & Purpose 8 Chapter 2. Literature Review 9 2.1. Biomarkers of sarcopenia 9 2.2. Bioimpedance in muscle mass estimation 9 Chapter 3. Methods 12 3.1. Electrical Impedance Tomography (EIT) 12 3.1.1. Principle 12 3.1.2. Measurement schemes 13 3.1.3. Bioelectrical properties of human body 16 3.2. Forward problem in EIT 17 3.3. Distinguishability in EIT 19 3.3.1. Deriving optimal current pattern 21 3.4. The finite element solver 22 3.5. Typical phantom models 23 3.6. Thigh anatomy model 24 3.6.1. Preparations of thigh anatomy model 25 3.6.2. Morphological changes of muscle tissues 26 Chapter 4. Results 28 4.1. Phantom tank models 28 4.2. Thigh anatomy models 31 4.2.1. Fatty infiltration 32 4.2.2. Muscle atrophy 34 Chapter 5. Discussions 35 5.1. Comparison on phantom models 35 5.2. Possible error source in finding best current pattern 36 5.3. Comparison on anatomical models 39 Chapter 6. Conclusions 40 References 42

    [1] I. H. Rosenberg, ‘Sarcopenia: Origins and Clinical Relevance’, J. Nutr., vol. 127, no. 5, pp. 990S-991S, May 1997, doi: 10.1093/jn/127.5.990S.
    [2] A. J. Cruz-Jentoft et al., ‘Sarcopenia: revised European consensus on definition and diagnosis’, Age Ageing, vol. 48, no. 1, pp. 16–31, Jan. 2019, doi: 10.1093/ageing/afy169.
    [3] E. Roh and K. M. Choi, ‘Health Consequences of Sarcopenic Obesity: A Narrative Review.’, Front. Endocrinol., vol. 11, p. 332, 2020, doi: 10.3389/fendo.2020.00332.
    [4] J. E. Morley, ‘Sarcopenia: diagnosis and treatment.’, J. Nutr. Health Aging, vol. 12, no. 7, pp. 452–456, Sep. 2008, doi: 10.1007/BF02982705.
    [5] L.-K. Chen et al., ‘Sarcopenia in Asia: Consensus Report of the Asian Working Group for Sarcopenia’, J. Am. Med. Dir. Assoc., vol. 15, no. 2, pp. 95–101, Feb. 2014, doi: 10.1016/j.jamda.2013.11.025.
    [6] G. Shafiee, A. Keshtkar, A. Soltani, Z. Ahadi, B. Larijani, and R. Heshmat, ‘Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies’, J. Diabetes Metab. Disord., vol. 16, pp. 21–21, May 2017, doi: 10.1186/s40200-017-0302-x.
    [7] C. Beaudart et al., ‘Sarcopenia in daily practice: assessment and management.’, BMC Geriatr., vol. 16, no. 1, p. 170, Oct. 2016, doi: 10.1186/s12877-016-0349-4.
    [8] F. Buckinx et al., ‘Pitfalls in the measurement of muscle mass: a need for a reference standard.’, J. Cachexia Sarcopenia Muscle, vol. 9, no. 2, pp. 269–278, Apr. 2018, doi: 10.1002/jcsm.12268.
    [9] Y. Yamada et al., ‘Developing and Validating an Age-Independent Equation Using Multi-Frequency Bioelectrical Impedance Analysis for Estimation of Appendicular Skeletal Muscle Mass and Establishing a Cutoff for Sarcopenia’, Int. J. Environ. Res. Public. Health, vol. 14, no. 7, p. 809, Jul. 2017, doi: 10.3390/ijerph14070809.
    [10] S. Mansouri, Y. Alharbi, F. Haddad, S. Chabcoub, A. Alshrouf, and A. A. Abd-Elghany, ‘Electrical Impedance tomography – recent applications and developments’, J. Electr. Bioimpedance, vol. 12, no. 1, pp. 50–62, 2021, doi: 10.2478/joeb-2021-0007.
    [11] Y. Zhang, R. Xiao, and C. Harrison, ‘Advancing hand gesture recognition with high resolution electrical impedance tomography’, presented at the Proceedings of the 29th Annual Symposium on User Interface Software and Technology, 2016, pp. 843–850.
    [12] P. Limpawattana, P. Kotruchin, and C. Pongchaiyakul, ‘Sarcopenia in Asia’, Osteoporos. Sarcopenia, vol. 1, no. 2, pp. 92–97, Dec. 2015, doi: 10.1016/j.afos.2015.10.001.
    [13] T. N. Kim and K. M. Choi, ‘Sarcopenia: definition, epidemiology, and pathophysiology.’, J. Bone Metab., vol. 20, no. 1, pp. 1–10, May 2013, doi: 10.11005/jbm.2013.20.1.1.
    [14] S. J. Lee, I. Janssen, S. B. Heymsfield, and R. Ross, ‘Relation between whole-body and regional measures of human skeletal muscle.’, Am. J. Clin. Nutr., vol. 80, no. 5, pp. 1215–1221, Nov. 2004, doi: 10.1093/ajcn/80.5.1215.
    [15] L. Schweitzer et al., ‘What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults?’, Am. J. Clin. Nutr., vol. 102, no. 1, pp. 58–65, Jul. 2015, doi: 10.3945/ajcn.115.111203.
    [16] F. Rodrigues, C. Domingos, D. Monteiro, and P. Morouço, ‘A Review on Aging, Sarcopenia, Falls, and Resistance Training in Community-Dwelling Older Adults.’, Int. J. Environ. Res. Public. Health, vol. 19, no. 2, Jan. 2022, doi: 10.3390/ijerph19020874.
    [17] S. Inhuber et al., ‘Associations of thigh muscle fat infiltration with isometric strength measurements based on chemical shift encoding-based water-fat magnetic resonance imaging.’, Eur. Radiol. Exp., vol. 3, no. 1, p. 45, Nov. 2019, doi: 10.1186/s41747-019-0123-4.
    [18] M. Tosato et al., ‘Measurement of muscle mass in sarcopenia: from imaging to biochemical markers.’, Aging Clin. Exp. Res., vol. 29, no. 1, pp. 19–27, Feb. 2017, doi: 10.1007/s40520-016-0717-0.
    [19] I. Janssen, S. B. Heymsfield, R. N. Baumgartner, and R. Ross, ‘Estimation of skeletal muscle mass by bioelectrical impedance analysis.’, J. Appl. Physiol. Bethesda Md 1985, vol. 89, no. 2, pp. 465–471, Aug. 2000, doi: 10.1152/jappl.2000.89.2.465.
    [20] R. Aaron and C. A. Shiffman, ‘Using localized impedance measurements to study muscle changes in injury and disease.’, Ann. N. Y. Acad. Sci., vol. 904, pp. 171–180, May 2000, doi: 10.1111/j.1749-6632.2000.tb06443.x.
    [21] V. Tomicic and R. Cornejo, ‘Lung monitoring with electrical impedance tomography: technical considerations and clinical applications.’, J. Thorac. Dis., vol. 11, no. 7, pp. 3122–3135, Jul. 2019, doi: 10.21037/jtd.2019.06.27.
    [22] R. Ogawa, M. R. Baidillah, S. Akita, and M. Takei, ‘Investigation of Physiological Swelling on Conductivity Distribution in Lower Leg Subcutaneous Tissue by Electrical Impedance Tomography.’, J. Electr. Bioimpedance, vol. 11, no. 1, pp. 19–25, Jan. 2020, doi: 10.2478/joeb-2020-0004.
    [23] H. Rajaguru, P. Rathinam, and R. Singaravelu, ‘Electrical impedance tomography (EIT) and its medical applications: a review’, Int J Soft Comp Eng, vol. 3, pp. 193–8, Jan. 2013.
    [24] C. Putensen, H. Wrigge, and J. Zinserling, ‘Electrical impedance tomography guided ventilation therapy.’, Curr. Opin. Crit. Care, vol. 13, no. 3, pp. 344–350, Jun. 2007, doi: 10.1097/MCC.0b013e328136c1e2.
    [25] L. Sang, Z. Zhao, Z. Lin, X. Liu, N. Zhong, and Y. Li, ‘A narrative review of electrical impedance tomography in lung diseases with flow limitation and hyperinflation: methodologies and applications’, Ann. Transl. Med., vol. 8, no. 24, Dec. 2020, doi: 10.21037/atm-20-4984.
    [26] P. Somhorst, D. Gommers, and H. Endeman, ‘Advanced respiratory monitoring in mechanically ventilated patients with coronavirus disease 2019-associated acute respiratory distress syndrome’, Curr. Opin. Crit. Care, vol. 28, no. 1, 2022, [Online]. Available: https://journals.lww.com/co-criticalcare/Fulltext/2022/02000/Advanced_respiratory_monitoring_in_mechanically.8.aspx
    [27] M. Proenca et al., ‘Non-invasive monitoring of pulmonary artery pressure at the bedside’, presented at the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2016. doi: 10.1109/embc.2016.7591662.
    [28] S. Ayati, K. Bouazza-Marouf, and D. Kerr, ‘In vitro localisation of intracranial haematoma using electrical impedance tomography semi-array’, Med. Eng. Phys., vol. 37, no. 1, pp. 34–41, Jan. 2015, doi: 10.1016/j.medengphy.2014.10.001.
    [29] A. Ron, S. Abboud, and M. Arad, ‘Home monitoring of bone density in the wrist-a parametric EIT computer modeling study’, Biomed. Phys. Eng. EXPRESS, vol. 2, no. 3, Jun. 2016, doi: 10.1088/2057-1976/2/3/035002.
    [30] G. J. Saulnier, R. S. Blue, J. C. Newell, D. Isaacson, and P. M. Edic, ‘Electrical impedance tomography’, IEEE Signal Process. Mag., vol. 18, no. 6, pp. 31–43, Nov. 2001, doi: 10.1109/79.962276.
    [31] W. Lionheart, ‘EIT reconstruction algorithms: pitfalls, challenges and recent developments’, PHYSIOLOGICAL MEASUREMENT, vol. 25, no. 1. IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND, pp. 125–142, Feb. 2004. doi: 10.1088/0967-3334/25/1/021.
    [32] L. Borcea, ‘Electrical impedance tomography’, Inverse Probl., vol. 18, no. 6, p. R99, 2002.
    [33] W R Breckon and M K Pidcock, ‘Data errors and reconstruction algorithms in electrical impedance tomography’, Clin. Phys. Physiol. Meas., vol. 9, no. 4A, p. 105, Nov. 1988, doi: 10.1088/0143-0815/9/4A/018.
    [34] B. H. Brown and A. D. Seagar, ‘The Sheffield data collection system’, Clin. Phys. Physiol. Meas., vol. 8, no. 4A, pp. 91–97, Nov. 1987, doi: 10.1088/0143-0815/8/4a/012.
    [35] D C Barber and B H Brown, ‘Applied potential tomography’, J. Phys. [E], vol. 17, no. 9, p. 723, Sep. 1984, doi: 10.1088/0022-3735/17/9/002.
    [36] A. J. Wilson, P. Milnes, A. R. Waterworth, R. Smallwood, and B. H. Brown, ‘Mk3.5: A modular, multi-frequency successor to the Mk3a EIS/EIT system’, Physiol. Meas., vol. 22, pp. 49–54, Mar. 2001, doi: 10.1088/0967-3334/22/1/307.
    [37] Z. Zhao et al., ‘Regional air trapping in acute exacerbation of obstructive lung diseases measured with electrical impedance tomography: a feasibility study.’, Minerva Anestesiol., vol. 86, no. 2, pp. 172–180, Feb. 2020, doi: 10.23736/S0375-9393.19.13732-7.
    [38] G. Boverman et al., ‘Efficient Simultaneous Reconstruction of Time-Varying Images and Electrode Contact Impedances in Electrical Impedance Tomography’, IEEE Trans. Biomed. Eng., vol. 64, pp. 1–1, Jun. 2016, doi: 10.1109/TBME.2016.2578646.
    [39] D. C. Barber, B. H. Brown, and N. J. Avis, ‘Image reconstruction in Electrical Impedance Tomography using filtered back-projection’, in 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Nov. 1992, pp. 1691–1692. doi: 10.1109/IEMBS.1992.5761992.
    [40] D G Gisser, D Isaacson, and J C Newell, ‘Theory and performance of an adaptive current tomography system’, Clin. Phys. Physiol. Meas., vol. 9, no. 4A, p. 35, Nov. 1988, doi: 10.1088/0143-0815/9/4A/007.
    [41] D. G. Gisser, D. Isaacson, and J. C. Newell, ‘Current topics in impedance imaging.’, Clin. Phys. Physiol. Meas. Off. J. Hosp. Phys. Assoc. Dtsch. Ges. Med. Phys. Eur. Fed. Organ. Med. Phys., vol. 8 Suppl A, pp. 39–46, 1987, doi: 10.1088/0143-0815/8/4a/005.
    [42] R. COOK, G. SAULNIER, D. GISSER, J. GOBLE, J. NEWELL, and D. ISAACSON, ‘ACT3 - A HIGH-SPEED, HIGH-PRECISION ELECTRICAL-IMPEDANCE TOMOGRAPH’, IEEE Trans. Biomed. Eng., vol. 41, no. 8, pp. 713–722, Aug. 1994, doi: 10.1109/10.310086.
    [43] Q. S. Zhu, C. N. McLeod, C. W. Denyer, F. J. Lidgey, and W. R. Lionheart, ‘Development of a real-time adaptive current tomograph.’, Physiol. Meas., vol. 15 Suppl 2a, pp. A37-43, May 1994, doi: 10.1088/0967-3334/15/2a/005.
    [44] D. Isaacson, ‘Distinguishability of conductivities by electric current computed tomography.’, IEEE Trans. Med. Imaging, vol. 5, no. 2, pp. 91–95, 1986, doi: 10.1109/TMI.1986.4307752.
    [45] T. Li, D. Isaacson, J. Newell, and G. Saulnier, ‘Adaptive techniques in electrical impedance tomography reconstruction’, Physiol. Meas., vol. 35, p. 1111, May 2014, doi: 10.1088/0967-3334/35/6/1111.
    [46] H. McCann, G. Pisano, and L. Beltrachini, ‘Variation in Reported Human Head Tissue Electrical Conductivity Values.’, Brain Topogr., vol. 32, no. 5, pp. 825–858, Sep. 2019, doi: 10.1007/s10548-019-00710-2.
    [47] M. Cheney, D. Isaacson, J. C. Newell, S. Simske, and J. Goble, ‘NOSER: An algorithm for solving the inverse conductivity problem’, Int. J. Imaging Syst. Technol., vol. 2, no. 2, pp. 66–75, Jun. 1990, doi: 10.1002/ima.1850020203.
    [48] Kuo-Sheng Cheng, D. Isaacson, J. C. Newell, and D. G. Gisser, ‘Electrode models for electric current computed tomography’, IEEE Trans. Biomed. Eng., vol. 36, no. 9, pp. 918–924, Sep. 1989, doi: 10.1109/10.35300.
    [49] N. Hyvönen, ‘Complete Electrode Model of Electrical Impedance Tomography: Approximation Properties and Characterization of Inclusions’, SIAM J. Appl. Math., vol. 64, Jan. 2004, doi: 10.1137/S0036139903423303.
    [50] G. Boverman, B. S. Kim, D. Isaacson, and J. C. Newell, ‘The complete electrode model for imaging and electrode contact compensation in electrical impedance tomography.’, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf., vol. 2007, pp. 3462–3465, 2007, doi: 10.1109/IEMBS.2007.4353076.
    [51] M. Cheney and D. Isaacson, ‘Distinguishability in impedance imaging’, IEEE Trans. Biomed. Eng., vol. 39, no. 8, pp. 852–860, Aug. 1992, doi: 10.1109/10.148393.
    [52] B. M. Eyuboglu and T. C. Pilkington, ‘Comments on distinguishability in electrical impedance imaging’, IEEE Trans. Biomed. Eng., vol. 40, no. 12, pp. 1328–1330, Dec. 1993, doi: 10.1109/10.250589.
    [53] A Koksal and B M Eyuboglu, ‘Determination of optimum injected current patterns in electrical impedance tomography’, Physiol. Meas., vol. 16, no. 3A, p. A99, Aug. 1995, doi: 10.1088/0967-3334/16/3A/010.
    [54] P. Hua, E. J. Woo, J. G. Webster, and W. J. Tompkins, ‘Improved methods to determine optimal currents in electrical impedance tomography’, IEEE Trans. Med. Imaging, vol. 11, no. 4, pp. 488–495, Dec. 1992, doi: 10.1109/42.192684.
    [55] A. Adler and W. R. B. Lionheart, ‘Uses and abuses of EIDORS: an extensible software base for EIT.’, Physiol. Meas., vol. 27, no. 5, pp. S25-42, May 2006, doi: 10.1088/0967-3334/27/5/S03.
    [56] N. Polydorides and W. Lionheart, ‘A Matlab based toolkit for three-dimensional electrical impedance tomography: A contribution to the EIDORS project’, Meas. Sci. Technol., vol. 13, p. 1871, Nov. 2002, doi: 10.1088/0957-0233/13/12/310.
    [57] A. Adler and W. Lionheart, ‘EIDORS: Towards a community-based extensible software base for EIT’, Jan. 2005.
    [58] A. Adler, A. Borsic, N. Polydorides, and W. R. B. Lionheart, ‘Simple FEMs aren’t as good as we thought: experiences developing EIDORS v3.3’, 2008.
    [59] M. W. Hamrick, M. E. McGee-Lawrence, and D. M. Frechette, ‘Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity.’, Front. Endocrinol., vol. 7, p. 69, 2016, doi: 10.3389/fendo.2016.00069.
    [60] G. N. Marzuca-Nassr, Y. SanMartín-Calísto, P. Guerra-Vega, M. Artigas-Arias, A. Alegría, and R. Curi, ‘Skeletal Muscle Aging Atrophy: Assessment and Exercise-Based Treatment’, in Reviews on New Drug Targets in Age-Related Disorders, P. C. Guest, Ed., Cham: Springer International Publishing, 2020, pp. 123–158. doi: 10.1007/978-3-030-42667-5_6.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE