| 研究生: |
陳少文 Chen, Shao-Wen |
|---|---|
| 論文名稱: |
疏水修飾聚(N-乙烯甲醯胺)及十二烷基硫酸鈉水凝膠流變性質之研究 Rheological Study on Gelation of Hydrophobically Modified Poly(N-vinylformamide) and Sodium Dodecyl Sulfate |
| 指導教授: |
侯聖澍
Hou, Sheng-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 疏水修飾聚(N-乙烯甲醯胺) 、十二烷基硫酸鈉 、水凝膠 、流變學 |
| 外文關鍵詞: | hydrogel, hydrophobically modified poly(N-vinylformamide), sodium dodecyl sulfate, rheology |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
疏水修飾為一種能將高分子水溶液形成水凝膠的技術。本研究透過逆乳化聚合方式,於甲苯中合成不同碳鏈長度與疏水修飾程度的疏水修飾聚(N-乙烯甲醯胺)[hydrophobically modified poly(N-vinylformamide), HMPNVF]。透過倒立法可知碳鏈長度為形成水凝膠之最重要因素。
透過黏度及黏彈性質變化,推測出HMPNVF與陰離子型界面活性劑十二烷基硫酸鈉(sodium dodecyl sulfate, SDS)交互作用之機制。在HMPNVF及SDS水凝膠系統中,利用調整SDS濃度可調整整體物理性質。當SDS在水凝膠中為低濃度時,可增加其交聯密度;當SDS為高濃度時,解開超分子化學鍵結,導致水凝膠強度降低,繼續提高SDS濃度會出現相分離情形。
在結構回復實驗中,因SDS頭基彼此具有靜電排斥力,故可發現添加SDS的系統會比未添加SDS的系統回復時間來得久。對溫度的響應中,HMPNVF水溶液由於物理性架橋密度低,溫度上升後,其黏度降低;提高HMPNVF濃度形成水凝膠,物理性架橋密度提高,不受外界溫度影響其結構。
Hydrophobically modified poly(N-vinylformamide) (HMPNVF) were synthesized by inverse emulsion polymerization using as hydrophobic monomers hexyl-, dodecyl-, hexadecyl acrylate. The study had been performed as a comparative different hydrophobic percentage and length of HMPNVF. In this study, the binding mechanism of SDS (sodium dodecyl sulfate) on HMPNVF on the rheological properties were studied using oscillatory shear and steady shear viscosity measurements. The viscosity of HMPNVF solution or hydrogel was affected and controlled by SDS and the rheological data showed that HMPNVF/SDS system was more sensitive to external shear than HMPNVF only. Because of the electrostatic repulsion force of SDS each other, it would need more time to recover after being subjected to external force in HMPNVF/SDS system than HMPNVF only. Increasing temperature would decrease the viscosity of HMPNVF aqueous solution, but it wouldn’t affect the structure of HMPNVF hydrogel because the crosslinking density of HMPNVF hydrogel was much higher than aqueous solution.
1. Li, L., Guo, Xuhong Fu, Lin, Prud’homme, Robert K., Lincoln, Stephen F., Complexation Behavior of α-, β-, and γ-Cyclodextrin in Modulating and Constructing Polymer Networks. Langmuir 2008, 24 (15), 8290-8296.
2. Yamamoto, K.; Serizawa, T.; Akashi, M., Synthesis and functionalities of poly(N-vinylalkylamide) part XIV - Synthesis and thermosensitive properties of poly [(N-vinylamide)-co-(vinyl acetate)]s and their hydrogels. Macromol Chem Phys 2003, 204 (7), 1027-1033.
3. Sandra L. Cram, H. R. B., Geoffrey M. Spinks, Dominique Hourdet, and Costantino Creton, Hydrophobically Modified Dimethylacrylamide Synthesis and Rheological Behavior. Macromolecules 2005, 38, 2981-2989.
4. 邱政鋒, 疏水修飾聚(N-乙烯甲醯胺)與陰離子型、陽離子型、和非離子型界面活性劑交互作用研究 國立成功大學化學工程學系碩士論文. 2008.
5. Piculell, I.; Thuresson, K.; Lindman, B., Mixed solutions of surfactant and hydrophobically modified polymer. Polymers for Advanced Technologies 2001, 12 (1-2), 44-69.
6. Carro, S., Gonzalez-Coronel, Valeria J, Castillo-Tejas, Jorge, Maldonado-Textle, Hortensia, Tepale, Nancy, Rheological Properties in Aqueous Solution for Hydrophobically Modified Polyacrylamides Prepared in Inverse Emulsion Polymerization. International Journal of Polymer Science 2017, 2017, 1-13.
7. Tanaka, R.; Meadows, J.; Phillips, G. O.; Williams, P. A., Viscometric and Spectroscopic Studies on the Solution Behavior of Hydrophobically Modified Cellulosic Polymers. Carbohydrate Polymers 1990, 12 (4), 443-459.
8. Abdurrahmanoglu, S.; Can, V.; Okay, O., Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 2009, 50 (23), 5449-5455.
9. Volpert, E.; Selb, J.; Candau, F., Associating behaviour of polyacrylamides hydrophobically modified with dihexylacrylamide. Polymer 1998, 39 (5), 1025-1033.
10. Penott-Chang, E. K.; Gouveia, L.; Fernandez, I. J.; Muller, A. J.; Diaz-Barrios, A.; Saez, A., Rheology of aqueous solutions of hydrophobically modified polyacrylamides and surfactants. Colloid Surface A 2007, 295 (1-3), 99-106.
11. Liu, C.; Liu, X.; Yu, J.; Gao, G.; Liu, F., Network structure and mechanical properties of hydrophobic association hydrogels: Surfactant effect I. Journal of Applied Polymer Science 2015, 132 (1).
12. Gouveia, L. M.; Grassl, B.; Muller, A. J., Synthesis and rheological properties of hydrophobically modified polyacrylamides with lateral chains of poly(propylene oxide) oligomers. J Colloid Interface Sci 2009, 333 (1), 152-63.
13. Regalado, E. J.; Selb, J.; Candau, F., Viscoelastic behavior of semidilute solutions of multisticker polymer chains. Macromolecules 1999, 32 (25), 8580-8588.
14. Tuncaboylu, D. C.; Sari, M.; Oppermann, W.; Okay, O., Tough and Self-Healing Hydrogels Formed via Hydrophobic Interactions. Macromolecules 2011, 44 (12), 4997-5005.
15. Tuncaboylu, D. C.; Sahin, M.; Argun, A.; Oppermann, W.; Okay, O., Dynamics and Large Strain Behavior of Self-Healing Hydrogels with and without Surfactants. Macromolecules 2012, 45 (4), 1991-2000.
16. Piculell, L.; Guillemet, F.; Thuresson, K.; Shubin, V.; Ericsson, O., Binding of surfactants to hydrophobically modified polymers. Adv Colloid Interfac 1996, 63, 1-21.
17. Panmai, S.; Prud'homme, R. K.; Peiffer, D. G., Rheology of hydrophobically modified polymers with spherical and rod-like surfactant micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999, 147 (1), 3-15.
18. R. Tanaka, J. M., P. A. Williams, and G. O. Phillips, Interaction of Hydrophobically Modified (Hydroxyethyl)cellulose with Various Added Surfactants. Macromolecules 1992, 25, 1304-1310.
19. Patruyo, L. G.; Muller, A. J.; Saez, A. E., Shear and extensional rheology of solutions of modified hydroxyethyl celluloses and sodium dodecyl sulfate. Polymer 2002, 43 (24), 6481-6493.
20. Lin, C. C.; Chang, C. H.; Yang, Y. M., Gelation of spontaneously formed catanionic vesicles by water soluble polymers. Colloid Surface A 2009, 346 (1-3), 66-74.
21. Zhao, G. Q.; Shing, B. C., Phase behavior and shear thickening of HM-HEC solutions with addition of nonionic surfactant C12E5. J Cent South Univ T 2007, 14, 202-205.
22. Kopperud, H. M.; Hansen, F. K.; Nystrom, B., Effect of surfactant and temperature on the rheological properties of aqueous solutions of unmodified and hydrophobically modified polyacrylamide. Macromol Chem Phys 1998, 199 (11), 2385-2394.
23. Karoyo, A.; Wilson, L., Physicochemical Properties and the Gelation Process of Supramolecular Hydrogels: A Review. Gels 2017, 3 (1).
24. Buwalda, S. J.; Boere, K. W.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E., Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 2014, 190, 254-73.
25. Tomatsu, I.; Hashidzume, A.; Harada, A., Photoresponsive hydrogel system using molecular recognition of α-cyclodextrin. Macromolecules 2005, 38 (12), 5223-5227.
26. Itsuro, T.; Akihito, H.; Akira, H., Redox‐Responsive Hydrogel System Using the Molecular Recognition of β‐Cyclodextrin. Macromolecular Rapid Communications 2006, 27 (4), 238-241.
27. Xiong, C.; Peng, K.; Tang, X.; Ye, Z.; Shi, Y.; Yang, H., CO2-responsive self-healable hydrogels based on hydrophobically-modified polymers bridged by wormlike micelles. RSC Advances 2017, 7 (55), 34669-34675.
28. Hao, X.; Liu, H.; Lu, Z.; Xie, Y.; Yang, H., Endowing the conventional HMPAM hydrogel with pH-responsive and self-healing properties. Journal of Materials Chemistry A 2013, 1 (23).
29. Philippova, O. E.; Molchanov, V. S., Polymer-Surfactant Networks Highly Responsive to Hydrocarbons. Macromolecular Symposia 2010, 291-292 (1), 137-143.
30. Molchanov, V. S.; Philippova, O. E., Dominant role of wormlike micelles in temperature-responsive viscoelastic properties of their mixtures with polymeric chains. J Colloid Interf Sci 2013, 394, 353-359.
31. Bilici, C.; Can, V.; Nöchel, U.; Behl, M.; Lendlein, A.; Okay, O., Melt-Processable Shape-Memory Hydrogels with Self-Healing Ability of High Mechanical Strength. Macromolecules 2016, 49 (19), 7442-7449.
32. Gulyuz, U.; Okay, O., Self-Healing Poly(acrylic acid) Hydrogels with Shape Memory Behavior of High Mechanical Strength. Macromolecules 2014, 47 (19), 6889-6899.
33. Wang, C.; Wiener, C. G.; Cheng, Z.; Vogt, B. D.; Weiss, R. A., Modulation of the Mechanical Properties of Hydrophobically Modified Supramolecular Hydrogels by Surfactant-Driven Structural Rearrangement. Macromolecules 2016, 49 (23), 9228-9238.
34. Gulyuz, U.; Okay, O., Self-healing poly(N-isopropylacrylamide) hydrogels. European Polymer Journal 2015, 72, 12-22.
35. Deguchi, S.; Akiyoshi, K.; Lindman, B.; Sunamoto, J., Hydrophobized polysaccharide macrogel formed by addition of surfactants. Macromolecular Symposia 1996, 109, 1-14.
36. Deguchi, S.; Kuroda, K.; Akiyoshi, K.; Lindman, B.; Sunamoto, J., Gelation of cholesterol-bearing pullulan by surfactant and its rheology. Colloid Surface A 1999, 147 (1-2), 203-211.
37. Dualeh, A. J.; Steiner, C. A., Bulk and Microscopic Properties of Surfactant-Bridged Hydrogels Made from an Amphiphilic Graft Copolymer. Macromolecules 1991, 24 (1), 112-116.
38. Vikram Kumar, C. A. S., Surfactant-mediated gelation of hydrophobically modified hydroxyethyl cellulose: effects of polymer and surfactant structure. Colloids and Surfaces A Physicochemical and Engineering Aspects 1999, 147, 27–38.
39. Steiner, S.-Y. W. a. C. A., EFFECTS OF TEMPERATURE ON BULK PROPERTIES OF HYDROGELS MADE FROM HYDROPHOBICALLY MODIFIED HYDROXYETHYL CELLULOSE IN SURFACTANT SOLUTIONS. Mat. Res. Soc. Symp. Proc. 1994, 331, 205-210.
40. Hoffmann, H.; Kastner, U.; Donges, R.; Ehrler, R., Gels from modified hydroxyethyl cellulose and ionic surfactants. Polym Gels Netw 1996, 4 (5-6), 509-526.
41. Sarrazincartalas, A.; Iliopoulos, I.; Audebert, R.; Olsson, U., Association and Thermal Gelation in Mixtures of Hydrophobically-Modified Polyelectrolytes and Nonionic Surfactants. Langmuir 1994, 10 (5), 1421-1426.
42. Loyen, K.; Iliopoulos, I.; Audebert, R.; Olsson, U., Reversible Thermal Gelation in Polymer Surfactant Systems - Control of the Gelation Temperature. Langmuir 1995, 11 (4), 1053-1056.
43. Iliopoulos, I.; Olsson, U., Polyelectrolyte Association to Micelles and Bilayers. J Phys Chem-Us 1994, 98 (5), 1500-1505.
44. Masrat, R.; Maswal, M.; Chat, O. A.; Rather, G. M.; Dar, A. A., A rheological investigation of sol–gel transition of hydroxypropyl cellulose with nonionic surfactant sorbitan monopalmitate: Modulation of gel strength by UV irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 489, 113-121.
45. Jae-Ho Lee, J. P. G., Tianhong Chen, Gregory F. Payne, and Srinivasa R. Raghavan, Vesicle-Biopolymer Gels: Networks of Surfactant Vesicles Connected by Associating Biopolymers. Langmuir 2005, 21, 26-33.
46. Hao, X.; Liu, H.; Xie, Y.; Fang, C.; Yang, H., Thermal-responsive self-healing hydrogel based on hydrophobically modified chitosan and vesicle. Colloid and Polymer Science 2013, 291 (7), 1749-1758.
47. Antunes, F. E.; Coppola, L.; Rossi, C. O.; Ranieri, G. A., Gelation of charged bio-nanocompartments induced by associative and non-associative polysaccharides. Colloid Surface B 2008, 66 (1), 134-140.
48. Hao, J.; Weiss, R. A., Viscoelastic and Mechanical Behavior of Hydrophobically Modified Hydrogels. Macromolecules 2011, 44 (23), 9390-9398.
49. Kavanagh, G. M.; Ross-Murphy, S. B., Rheological characterisation of polymer gels. Progress in Polymer Science 1998, 23 (3), 533-562.
50. Malvern Instruments White Paper - A Basic Introduction to Rheology.
51. Brassinne, J.; Stevens, A. M.; Van Ruymbeke, E.; Gohy, J.-F.; Fustin, C.-A., Hydrogels with Dual Relaxation and Two-Step Gel–Sol Transition from Heterotelechelic Polymers. Macromolecules 2013, 46 (22), 9134-9143.
52. Hou, J.-K. T. a. S.-S., Interactions between Poly(N-vinylformamide) and Sodium Dodecyl Sulfate As Studied by Fluorescence and Two-Dimensional NOE NMR Spectroscopy. Macromolecules 2008, 41, 1281-1288.
53. Dobrynin, M. R. a. A. V., <Associations leading to formation of reversible networks and.pdf>. Colloid and Interface Science 1999, 4, 83-87.