簡易檢索 / 詳目顯示

研究生: 陳佳琪
Chen, Chia-Chi
論文名稱: 利用氧化鋅與氧化鎳薄膜應用於三維堆疊式互補型薄膜電晶體之研究
Investigation of Three-Dimensionally Stacked Complementary Thin-Film Transistors Using ZnO and NiO Thin Film
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 68
中文關鍵詞: 氧化鎳氧化鋅互補式堆疊型薄膜電晶體
外文關鍵詞: NiO, ZnO, Stacked complementary thin-film-transistors
相關次數: 點閱:87下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討互補式薄膜電晶體之特性與運用,主要分為三部份。首先製作P型薄膜電晶體,此元件將承襲本實驗室過去之相關研究利用氧化鎳(NiO)材料作為通道層,其主要是增加氧化鎳之氧氣流量使其導電變佳,並藉由調變射頻功率找出最佳之載子遷移率,所製作之元件臨限電壓值(V_th)為-3.7 V,在VSG=10 V時,最大飽和電流為-77 μA,電流開關比為106。
    接續探討N型薄膜電晶體之特性,N型通道層以鋁(Al)摻雜氧化鋅(ZnO)作為該通道之薄膜,主要因鋁摻雜氧化鋅薄膜能使導電性變佳,藉由調變鋁摻雜之射頻功率,可調整N型薄膜之載子濃度使電晶體為增強型元件,而經由200℃熱退火3分鐘之臨限電壓值(V_th)為2.7 V,在VGS=10 V時,最大飽和電流為462 μA,電流開關比為106,為了使元件達到電流匹配特性,將調變腔壓參數使載子遷移率調整為互補式薄膜電晶體所需之參數。
    最後將P型與N型電晶體元件進行堆疊,其元件在飽和區之電流比例分別為6、3與1倍,並且經由輸出/輸入轉移曲線中,可觀察得知互補式薄膜電晶體元件在1倍的操作電流比例下具有較好的反相器輸出特性,操作於V_DD=10 V下,雜訊邊際(noise margin)的〖NM〗_H= 2.7 V、〖NM〗_L=2.2 V,而在VIN = VOUT時之VM值大約落於5 V位置,達到無偏斜反相器的輸出特性。在此堆疊反向器元件中, P型與N型兩電晶體長寬比皆相同情況下,調整N型通道層之參數,使得兩顆元件電流匹配,藉由此調變電流比例的做法,成功達到P型與N型元件以堆疊方式進行製作,使完成互補式薄膜電晶體元件之無偏斜反相器的輸出特性及面積尺寸有效降低,形成尺寸微縮之優勢。

    In this study, to explore characteristics and application of complementary thin film transistors (CTFTs) were mainly divided into three parts. First, the p-channel thin-film transistor (TFT) is designed and fabricated by using NiO thin film as channel layer. Second, to explore characteristics of the n-channel TFT. The n-channel layer is using Al-doped ZnO thin film as channel layer. Finally, we stacked the p-type and n-type TFT, and measured characteristics. We compare different n-type TFT characteristic of the CTFT characteristic to adjust an unskewed inverter. The CTFTs operated as an unskewed inverter that the β is 1. The noise margin high and low were about 2.7 V and 2.2 V, respectively. And when the input signal was 10 V, the midpoint voltage (VM) was 4.9 V, which close to value of VDD/2. The three-dimensionally stacked CTFTs have smaller devices size than the planar CTFTs. The stacked CTFTs can reduce the area required also have the great characteristics.

    摘要 I Abstract III 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 薄膜電晶體發展及近況 1 1.2 研究動機 1 1.3 論文架構 3 參考文獻 5 第二章 原理 10 2.1 物理氣相沉積系統 10 2.1.1 物理氣相沉積方式 10 2.1.2 磁控式物理氣相沉積濺鍍系統 10 2.1.3 濺鍍原理 11 2.1.4 電子束蒸鍍系統 12 2.2 薄膜之基本特性 12 2.2.1 氧化鎳之薄膜特性 12 2.2.2 氧化鋅之薄膜特性 13 2.3 薄膜電晶體之工作原理 13 2.4 薄膜電晶體之元件特性 16 2.4.1 臨界電壓 16 2.4.2 場效載子遷移率 16 2.4.3 元件開關比 17 2.4.4 次臨界擺幅 17 2.5 互補式薄膜電晶體 18 2.5.1 互補式金氧半場效電晶體簡介 18 2.5.2 互補式薄膜電晶體之工作原理 18 2.5.2.1 開關切換電壓 19 2.5.2.2 雜訊邊界(Noise margin, NM) 19 參考文獻 27 第三章 實驗流程 31 3.1 元件製程流程 31 3.1.1 清潔試片 31 3.2 N型元件 31 3.2.1 微影製程 31 3.2.2 閘極形成 32 3.2.3 微影製程 32 3.2.4 氧化層及通道層形成 33 3.2.5 微影製程 33 3.2.6 金屬蒸鍍 33 3.3 元件間之絕緣層 34 3.3.1 微影製程 34 3.3.2 絕緣層形成 34 3.4 P型元件 34 3.4.1 微影製程 34 3.4.2 閘極形成 34 3.4.3 微影製程 34 3.4.4 氧化層及通道層形成 35 3.4.5 微影製程 35 3.4.6 金屬蒸鍍 35 3.5 快速熱退火 35 3.6 閘極及金屬連線製作 35 3.7 量測儀器 36 第四章 實驗結果與討論 42 4.1 P型氧化鎳薄膜電晶體 42 4.1.1 氧化鎳薄膜電晶體之條件參數 42 4.1.2 P型薄膜電晶體之直流特性量測 43 4.2 N型薄膜電晶體 43 4.2.1 霍爾量測分析磁控射頻系統對於氧化鋅薄膜之影響 43 4.2.2 N型薄膜電晶體之直流特性量測 44 4.3 互補式薄膜電晶體 46 4.3.1 P/N型電晶體操作電流比例與反相器輸出特性 46 4.3.2 調變電流比例以減少尺寸面積 50 參考文獻 66 第五章 結論 67

    第一章 緒論
    [1]A. Sharma, M. Charu and J. Singh, “Performance evaluation of thin film transistors: history, technology development and comparison: a review,” Int. J. Comput. Appl. Technol., vol. 89, pp. 36-40, 2014.
    [2]R. L. Hoffman, B. J. Norris and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett., vol. 82, pp. 733-735, 2003.
    [3]Q. J. Yao and D. J. Li, “Fabrication and property study of thin film transistor using RF sputtered ZnO as channel layer,” J. Non-Cryst. Solids, vol. 351, pp. 3191-3194, 2005.
    [4]J. Oark, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K. K. Kim S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K. W. Kwon and Y. Park, “High-performance amorphous gallium indium zinc thin-film transistors through N2O plasma passivation,” Appl. Phys. Lett., vol. 93, pp. 053505-1-053505-3, 2008.
    [5]M. Ofuji, K. Abe, H. Shimizu, N. Kaji, R. Hayashi, M. Sano, H. Kumomi, K. Nomura, T. Kamiya and H. Hosono, “Fast thin-film transistor circuits based on amorphous oxide semiconductor,” IEEE Electron Device Lett., vol. 28, pp. 273-275, 2007.
    [6]E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. H. Ko Park, C. S. Hwang and R. Martins, “Transparent p-type SnOx thin film transistors produced by reactive RF magnetron sputtering followed by low temperature annealing,” Appl. Phys. Lett., vol. 97, pp. 052105-1-052105-3, 2010.
    [7]H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano and H. Hosono, “Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits,” Appl. Phys. Lett., vol. 97, pp. 072111-1-072111-3, 2010.
    [8]E. Fortunato,V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. Gonçalves, S. H. Ko Park, C. S. Hwang and R. Martins, “Thin-film transistors based on p-type Cu2O thin films produced at room temperature,” Appl. Phys. Lett., vol. 96, pp. 192102-1-192102-3, 2010.
    [9]V. Figueiredo, E. Elangovan, R. Barros, J. V. Pinto, T. Busani, R. Martins and E. Fortunato, “P-type Cu2O films deposited at room temperature for thin-film transistors,” J. Disp. Technol., vol. 8, pp. 41-47, 2012.
    [10]W. E. Bowen, W. Wang and J. D. Phillips, “Complementary thin-film electronics based on n-channel ZnO and p-channel ZnTe,” IEEE Electron Device Lett., Vol. 30, pp. 1314-1316, 2009.
    [11]S. Y. Park, H. R. Kim, Y. J. Kang, D. H. Kim and J. W. Kang, “Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer,” Sol. Energy Mater. Sol. Cells, vol. 94, pp. 2332-2336, 2010.
    [12]F. Hao, H. Lin, X. Li, J. Zhang, Y. Z. Liu and J. B. Li, “Enhancement of photocurrent of dye-sensitized solar cell by composite liquid electrolyte including NiO nanosheets,” J. Nanosci. Nanotechnol., vol. 10, pp. 7390-7393, 2010.
    [13]Z. Y. Wang, S. H. Lee, D. H. Kim, J. H. Kim and J. G. Park, “Effect of NiOx thin layer fabricated by oxygen-plasma treatment on polymer photovoltaic cell,” Sol. Energy Mater. Sol. Cells, vol. 94, pp. 1591-1596, 2010.
    [14]S. Uehara, S. Sumikura, E. Suzuki and S. Mori, “Retardation of electron injection at NiO/dye/electrolyte interface by aluminum alkoxide treatment,” Energy Environ. Sci., vol. 3, pp. 641-644, 2010.
    [15]P. Qin, M. Linder, T. Brinck, G. Boschloo, A. Hagfeldt and L. C. Sun, “High incident photon-to-current conversion efficiency of p-type dye-sensitized solar cells based on NiO and organic chromophores,” Adv. Mater., vol. 21, pp. 2993-2996, 2009.
    [16]I. Chary, A. Chandolu, B. Borisov, V. Kuryatkov, S. Nikishin and S. M. Holtz, “Influence of surface treatment and annealing temperature on the formation of low-resistance Au/Ni ohmic contacts to p-GaN,” J. Electron. Mater., vol. 38, pp. 545-550, 2009.
    [17]S. Kim, “Effect of interfacial properties of p-GaN /sputter-deposited NiAg-based electrode on optical properties of vertical GaN-based LEDs,” Electrochem. Solid State Lett., vol. 12, pp. H441-H444, 2009.
    [18]S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh and J. T. Hsu, “Enhanced output power of InGaN-GaN light-emitting diodes with high-transparency nickel-oxide-indium-tin-oxide ohmic contacts,” IEEE Photo. Technol. Lett., vol. 15, pp. 646-648, 2003.
    [19]S. Woo, J. Kim, G. Cho, K. Kim, H. Lyu and Y. Kim, “Influence of nickel oxide nanolayer and doping in organic light-emitting devices,” J. Ind. Eng. Chem., vol. 15, pp. 716-718, 2009.
    [20]J. Y. Chun, J. W. Han and D. S. Seo, “Application of high work function anode for organic light emitting diode,” Mol. Cryst. Liquid Cryst., vol. 514, pp. 445-451, 2009.
    [21]H. C. Im, D. C. Choo, T. W. Kim, J. H. Kim, J. H. Seo and Y. K. Kim, “Highly efficient organic light-emitting diodes fabricated utilizing nickel-oxide buffer layers between the anodes and the hole transport layers,” Thin Solid Films, vol. 515, pp. 5099-5102, 2007.
    [22]A. Sawaby, M. S. Selim, S. Y. Marzouk, M. A. Mostafa and A. Hosny, “Structure, optical and electrochromic properties of NiO thin films,” Physica B, vol. 405, pp. 3412-3420, 2010.
    [23]A. C. Sonavane, A. I. Inamdar, H. P. Deshmukh and P. S. Patil, “Multicoloured electrochmic thin films of NiO/PANI,” J. Phys. D-Appl. Phys., vol. 43, pp. 315102-1-315102-8, 2010.
    [24]X. C. Lou, X. J. Zhao, Y. L. Xiong and X. T. Sui, “The influence of annealing on electrochmic properties of Al-B-NiO thin films prepared by sol-gel,” J. Sol-Gel Sci. Technol., vol. 54, pp. 43-48, 2010.
    第二章 原理
    [1]G. J. Shyju, S. D. D. Roy and C. Sanjeeviraja, “Review on indium zinc oxide films: material properties and preparation techniques,” Mater. Sci. Forum, vol. 671, pp. 21-45, 2009.
    [2]S. Nagarani, M. Jayachandran and C. Sanjeeviraja, “Review on gallium zinc oxide films: material properties and preparation techniques,” Mater. Sci. Forum, vol. 671, pp. 47-68, 2009.
    [3]E. Fujii, A. Tomozawa, H. Torii and R. Takayama, “Preferred orientations of NiO films prepared by plasma-enhanced metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 35, pp. L328-L330, 1996.
    [4]M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano and S. Yamda, “Preparation and electrochromic properties of RF-sputtered NiOx films prepared in Ar/O2/H2 atmosphere,” Jpn. J. Appl. Phys., vol. 33, pp. 6656-6662, 1994.
    [5]H. Kumagai, M. Matsumoto, K. Toyoda and M. Oobara, “Preparation and characteristics of nickel oxide thin film by controlled growth with sequential surface chemical reactions,” J. Mater. Sci. Lett., vol. 15, pp. 1081-1803, 1996.
    [6]N. Ohshima, M. Nakada and Y. Tsukamoto, “Structural and magnetic properties of Ni-O/Ni-Fe bilayer films,” Jpn. J. Appl. Phys., vol. 35, pp. L1585-L1588, 1996.
    [7]O. Kohmoto, H. Nakagawa, F. Ono and A. Chayahara, “Ni-defective value and resistivity of sputtered NiO films,” J. Magn. Magn. Mater., vol. 226-230, pp. 1627-1629, 2001.
    [8]黃國倫, “銅添加對氧化鎳薄膜透光性及導電性之影響,” 國立成功大學材料科學及工程學系碩士論文, 2006.
    [9]H. Sato, T. Minami, S. Takata and T. Yamada, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering,” Thin Solid Films, vol. 236, pp. 27-31, 2003.
    [10]P. Kofstad, “Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides,” John Wiley and Sons, New York, 1972.
    [11]A. Mang, K. Reimann and St. Rübenacke, “Band gpas, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun., vol. 94, pp. 251-254, 1995.
    [12]E. Fortunato, P. Barquinha and R. Martins, “Oxide semiconductor thin-film transistors: a review of recent advances,” Adv. Mater., vol. 24, pp. 2945-2986, 2012.
    [13]T. C. Chen, T. C. Chang, T. Y. Hsieh, C. T. Tsai, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang and P. L. Chen, “Light-induced instability of an InGaZnO thin film transistor with and without SiOx passivation layer formed by plasma-enhanced-chemical-vapord deposition,” Appl. Phys. Lett., vol. 97, pp. 192103-1-192103-3, 2010.
    [14]C. N. Chen and J. J. Huang, “Characteristics of thin-film transistors based on silicon nitride passivation by excimer laser direct patterning,” Thin Solid Films, vol. 529, pp. 449-453, 2013.
    [15]X. Xu, L. Feng, S. He, Y. Jin and X. Guo, “Solution-processed zinc oxide thin-film transistors with a low-temperature polymer passivation layer,” IEEE Electron Dev. Lett., vol. 33, pp. 1420-1422, 2012.
    [16]J. Li, F. Zhou, H. P. Lin, W. Q. Zhu, J. H. Zhang, X. Y. Jiang and Z. L. Zhang, “Effect of reactive sputtered SiOx passivation layer on the stability of InGaZnO thin film transistors,” Vacuum, vol. 86, pp. 1840-1843, 2012.
    [17]M. Li, L. Lan, M. Xu, H. Xu, D. Luo, N. Xiong and J. Peng, “Impact of deposition temperature of the silicon oxide passivation on the performance of indium zinc oxide thin-film transistors,” Jpn. J. Appl. Phys., vol. 51, pp. 076501-1-076501-5, 2012.
    [18]K. Nomura, T. Kamiya and H. Hosono, “Stability and high-frequency operation of amorphous In–Ga–Zn–O thin-film transistors with various passivation layers,” Thin Solid Films, vol. 520, pp. 3778-3782, 2012.
    [19]施敏,“半導體元件物理與製作技術,” 國立交通大學出版社, 2008.
    [20]D. A. Hodges, H. G. Jackson and R. A. Saleh, “Analysis and design of digital integrated circuits,” McGraw-Hill Science Engineering, Jul. 2003.
    [21]Y. Taur and T. K. Ning, “Fundamentals of modern VLSI devices,” Cambridge Univ. Press, London, 1998.
    第四章 實驗結果與討論
    [1]洪婉瑜, “氧化鎳薄膜電晶體之特性研究,” 國立成功大學光電科學與工程學系碩士論文, 2013.
    [2]C. T. Lee, H. Y. Lee, H. L. Huang and C. Y. Tseng, “High-performance depletion-mode multiple-strip ZnO-based fin field-effect transistors,” IEEE Trans. Electron Devices, vol. 63, no. 1, pp. 446-451, 2016.
    [3]R. C. Jaeger, T. N. Blalock, Microelectronic circuit design, 4th, McGraw-Hill, 2011.
    [4]Z. Wang, H. A. Al-jawhari, P. K. Nayak, J. A. Caraveo-Frescas, N. Wei, M. N. Hedhili and H. N. Alshareef, “Low temperature processed complementary metal oxide semiconductor (CMOS) device by oxidation effect from capping layer,” Sci. Rep., vol. 5, no. 9617, pp. 9617-1-9617-6, 2015.

    無法下載圖示 校內:2022-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE