簡易檢索 / 詳目顯示

研究生: 蔡佩霓
Tsai, Pei-Ni
論文名稱: 屏東養殖漁民參與漁電共生轉型之意願及其影響因素探討
Analysis of Factors Influencing the Intention to Participate in Aquavoltaic Transition among Aquaculture Farmers in Pingtung, Taiwan
指導教授: 施義哲
Shih, Yi-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 海洋科技與事務研究所
Institute of Ocean Technology and Marine Affairs
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 128
中文關鍵詞: 能源轉型漁電共生養殖漁民計畫行為理論知覺阻礙
外文關鍵詞: Energy Transition, Aquavoltaics, Aquaculture Farmers, Theory of Planned Behavior, Perceived Barriers
相關次數: 點閱:712下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球氣候變遷與能源轉型趨勢下,再生能源發展已成國際共識。臺灣為推動太陽能光電,並因應土地資源限制,積極推廣「漁電共生」模式,結合水產養殖與綠能發電。屏東地區因其豐富日照與養殖基礎,成為政策推動重點。然而,作為政策核心參與者的養殖漁民,其對漁電共生的接受程度不一,其參與意願直接影響政策成功與否。本研究以計畫行為理論 (Theory of Planned Behavior, TPB) 為基礎,結合知覺阻礙(細分為環境阻礙、風險阻礙、經濟阻礙、作業阻礙、政策阻礙),建構一個態度、主觀規範、知覺阻礙的模型,探討屏東地區養殖漁民參與漁電共生轉型的意願。透過問卷作為研究工具,發放給屏東地區未參與過漁電共生之養殖漁民,總計回收247份有效問卷,並使用SPSS 17與SmartPLS 4統計軟體進行敘述性統計分析、信度分析、迴歸分析、獨立樣本t檢定、單因子變異數分析與偏最小平方法結構方程模型分析,分析養殖漁民的態度、主觀規範、知覺阻礙對其參與轉型意願的影響,並比較不同背景變項在此模型中各構面的差異。
    結果顯示,態度、主觀規範對參與轉型意願具有顯著正向影響。而知覺阻礙對參與轉型意願具有顯著負向影響。然而在知覺阻礙的五個子構面中,「環境阻礙」、「風險阻礙」、「經濟阻礙」、「作業阻礙」與「政策阻礙」對參與轉型意願在多元迴歸分析未達顯著影響。漁民主要擔憂漁電共生對環境景觀的衝擊,以及漁電共生設施的維護、回收與合約協商缺乏明確保障。同時,他們也憂慮政策會增加養殖技術、日常作業的困難和負擔,並對現行模糊的政策查核標準有疑慮。而漁民個人背景差異中,參與轉型意願較低多為養殖年資16年以上、養殖龍虎斑或午仔魚、淨年收入逾251萬元且對漁電共生政策不知情者;參與轉型意願較高者則為養殖年資15年以下、養殖淡水長臂大蝦、吳郭魚、虱目魚、淨年收入未滿50萬元且知悉漁電共生政策者。
    冀望藉由本研究之分析結果,作為漁電共生政策更加完善、養殖漁業轉型及提升養殖漁民參與漁電共生意願之參考依據,促進養殖產業與再生能源整合之永續發展。

    As climate change intensifies, Taiwan prioritizes green energy transition. The aquavoltaics (fishery and electricity symbiosis) policy offers a solution to balance energy demands with aquaculture. However, aquaculture farmers, as key stakeholders, show varied acceptance, making their intention to participate pivotal to the policy's success. This study applies the Theory of Planned Behavior (TPB) and incorporates perceived barriers, including environmental, risk, economic, operational, and policy barriers, to examine the intention of Pingtung aquaculture farmers to participate in aquavoltaics. Using a questionnaire, 247 valid responses were collected from farmers not yet involved in aquavoltaics. This study employed SPSS and SmartPLS 4 to analyze the data collected from the formal questionnaire.
    Results indicate that attitude and subjective norm have a positive influence on participation intention. Perceived barriers negatively affect it, though specific individual barriers didn't show significant impacts in multiple regression. Aquaculture farmers are primarily concerned about the ecological implications, unclear facility maintenance and recycling, practices, and contract negotiations. They also feared increased operational burdens and vague policy standards. Lower participation intention was seen in experienced farmers (> 16 years), those cultivating tiger grouper or threadfins, with higher incomes (> NT$2.51million), and those unaware of the policy. Higher intention was linked to less experience (< 15 years), farming giant river prawn, milkfish, or tilapia, lower incomes (< NT$0.5 million), and policy familiarity.
    This research provides insights for refining aquavoltaics policy, transforming aquaculture, and enhancing farmer participation to achieve sustainable integration.

    摘 要 I Abstract II 誌謝 VI 目 錄 VII 表目錄 IX 圖目錄 XI 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機與目的 5 第二章 文獻回顧 7 第一節 能源轉型與漁電共生 7 第二節 計畫行為理論與養殖漁民參與轉型意願的構面 19 第三章 研究方法 24 第一節 研究流程 24 第二節 研究架構與假設 25 第三節 研究工具 27 第四節 研究範圍與研究對象 39 第五節 問卷發放與抽樣方法 41 第六節 資料統計分析 42 第四章 研究結果 44 第一節 敘述性統計分析 44 第二節 信效度分析 54 第三節 差異檢定分析 56 第四節 多元迴歸分析 76 第五節 結構模型分析 78 第五章 討論 81 第一節 各構面與參與轉型意願之關係 81 第二節 不同個人基本資料之差異分析 84 第六章 結論與建議 87 第一節 研究結論 87 第二節 理論與實務意涵 91 第三節 建議 92 參考文獻 97 附錄一 正式問卷 111

    1. 丁誌魰、鄭韶華、李佳玲(2009)。養殖業者轉型觀光休閒漁業行爲意向之研究。休閒產業管理學刊,2(2),1-21。https://doi.org/10.6213/JLRIM.2009.2(2)1
    2. 宋瑞文(2019年7月4日)。日本最大型水上太陽光電 加蓋減緩水庫蒸發 發電、儲水雙贏。環境資訊中心。https://e-info.org.tw/node/218887
    3. 林弓義(2014)。讓陽光灑落希望的土地。屏東縣政府。
    4. 林和生(2017年8月26日)。屏東養水種電 向綠能招手。再生能源資訊網。https://www.re.org.tw/news/more.aspx?cid=198&id=685
    5. 林吉洋(2024年4月11日)。為何漁電共生變成漁不聊生?神農獎漁民邱經堯:租金上漲、土地競爭,養殖戶陷生存困境。上下游新聞。https://www.newsmarket.com.tw/blog/202050/
    6. 周文欽(2004)。研究方法—實徵性研究取向(二版)。心理出版社。
    7. 周桂田(2016)。氣候變遷驅動下臺灣能源轉型挑戰。載於周桂田、林子倫(編),臺灣能源轉型十四講(頁3-26)。巨流圖書。
    8. 邱家琳(2021年1月13日)。【漁電共生】漁電共生拚雙贏 漁業署:魚塭裝太陽能板可防寒害。上報Up Media。https://www.upmedia.mg/news_info.php?Type=5&SerialNo=104498
    9. 邱皓政(2019)。量化研究與統計分析:SPSS與R資料分析範例解析(六版)。五南。
    10. 洪綾君(2022)。能源轉型政策的分析與評估:以台南七股的太陽光電政策為例。韋伯文化。
    11. 洪宗德、陳瀅世(2022)。一般民眾對「漁電共生」政策文宣認同度-以台南七股為例。海大漁推,(52),1-18。https://doi.org/10.29474/FER.202212_(52).0001
    12. 侯清賢(2023)。因應氣候變遷之跨系統韌性與社會永續性評估:屏東養殖漁產業為例(MOST 111-2621-M-992-001)。國家科學及技術委員會。
    13. 黃振庭(2021)。臺灣漁電共生營運策略之研究(MOST 109-2313-B-019-007)。國家科學及技術委員會。
    14. 陳文姿(2019年8月7日)。租不到魚塭引漁民怒火 經部諾「原承租者納入籌設審查」。環境資訊中心。https://e-info.org.tw/node/219257
    15. 陳璋玲(2008)。漁民參與自願性休漁的動機、阻礙及海域使用觀念對參與意願影響之研究。高雄海洋科大學報,(23),43-62。https://doi.org/10.6983/KHHYKTHP.200812.0043
    16. 陳璋玲(2021)。漁電共構場域因子及社會效益評估之研究(MOST 108-2410-H-006-095)。國家科學及技術委員會。
    17. 蔡佳珊(2021年8月13日)。綠蟑螂橫行光電開發,業者居民均受害,未能取得共識,反成黑道提款機。上下游新聞。https://www.newsmarket.com.tw/blog/157280/
    18. 劉翰隆(2021)。台灣發展公民電廠的社會接受度評估—以計畫行為理論探討太陽能群眾募資之影響因素〔未出版之碩士論文〕。國立臺灣師範大學。https://hdl.handle.net/11296/929493
    19. 劉文宏(2024)。建構符合在地需求的漁電共生社會衝突溝通機制:以南臺灣的高雄與台南為例(NSTC 112-2410-H-992-047)。國家科學及技術委員會。
    20. 鄭力軒(2014)。重修屏東縣志:產業形態與經濟生活。屏東縣政府。
    21. 氣候變遷因應法(民國112年2月15日)。
    22. 行政院國家永續發展委員會(2022)。臺灣永續發展目標修正本。行政院國家永續發展委員會。https://ncsd.ndc.gov.tw/Fore/nsdn/archives/meet3/detail?id=06aed260-a583-4dd6-92d7-9e6c63349fb0
    23. 國家發展委員會(2022a)。公布「十二項關鍵戰略行動計畫」全面推動淨零轉型目標。https://www.ndc.gov.tw/nc_27_36501
    24. 國家發展委員會(2022b)。《臺灣 2050 淨零排放路徑及策略總說明》。https://www.ndc.gov.tw/Content_List.aspx?n=4791F8EC8DF04D9F
    25. 經濟部(2017)。太陽光電2年推動計畫(修正版)。https://www.ey.gov.tw/File/F5B13E2E96E3740F
    26. 經濟部能源署(2019)。109年太陽光電6.5GW達標計畫(核定本)。https://www.moeaea.gov.tw/ECW/populace/content/ContentDesc.aspx?menu_id=8890
    27. 經濟部能源署(2020)。高雄市及屏東縣可優先推動漁業經營結合綠能之區位範圍。https://www.moeaea.gov.tw/ECW/populace/content/Content.aspx?menu_id=14286
    28. 經濟部能源署(2023)。漁電共生申請程序手冊。https://www.moeaea.gov.tw/ECW/populace/home/Home.aspx
    29. 經濟部(2024a)。「我國電力能源配比執行現況與未來規劃」專案報告。立法院議事暨公報資訊網。https://ppg.ly.gov.tw/ppg/SittingAttachment/download/2024100995/PPGB60500_4200_20915_1131015_0002.pdf
    30. 經濟部(2024b)。續推動二次能源轉型 協助中小微企業升級轉型。經濟部。https://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&menu_id=40&news_id=116168
    31. 經濟部能源署(2024)。能源用地白皮書(光電篇)1.0。https://www.moeaea.gov.tw/ecw/populace/news/Board.aspx?kind=3&menu_id=57&news_id=33833
    32. 經濟部能源署(2025a)。漁電共生雙軌是增加選項無強制 政府提供養殖團體名單供媒合。經濟部全球資訊網。https://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&menu_id=40&news_id=118506
    33. 經濟部能源署(2025b)。113年能源統計手冊。https://www.esist.org.tw/publication/handbook?tab=%E4%BE%9B%E9%9C%80%E6%8F%90%E8%A6%81&subtab=
    34. 經濟部能源署(2025c)。再生能源裝機容量統計114年1月份月報。https://www.re.org.tw/information/statistics_more.aspx?id=7446
    35. 經濟部能源署(2025d)。再生能源發電量統計114年1月份月報。https://www.re.org.tw/information/statistics_more.aspx?id=7447
    36. 農業部水產試驗所(2019)。1081129漁電共生成果發表會手冊。https://www.tfrin.gov.tw/theme_data.php?theme=fishery&id=3
    37. 農業部(2019)。農業部養殖漁業經營結合綠能設施專案計畫審查作業要點。農業主管法規查詢系統。https://law.moa.gov.tw/LawContent.aspx?id=GL001009
    38. 農業部(2020)。修正「行政院農業委員會養殖漁業經營結合綠能設施專案計畫審查作業要點」。行政院公報資訊網,26(144)。https://gazette.nat.gov.tw/egFront/detail.do?metaid=117427&log=detailLog
    39. 農業部漁業署(2022)。漁業政策長期發展策略。農業部漁業署。
    40. 農業部漁業署(2023a)。民國112年漁業統計年報。農業部漁業署。
    41. 農業部漁業署(2023b)。漁電共生案場養殖事實查核分工及指引。https://age.triwra.org.tw/Page/Content/3f1c97c6-10f6-4a16-83da-72f619828ecc?group=Regulation&category=AgriRegulation
    42. 農業部漁業署(n.d.)。行情統計查詢-漁產品批發市場交易行情站。(檢索日期:2025年7月25日)。https://efish.fa.gov.tw/efish/statistics/reportmap.htm
    43. 日本經濟產業省資源能源廳與國土交通省港灣局(2024)。洋上風力発電による地域・漁業振興策事例集。日本經濟產業省資源能源廳與國土交通省港灣局。https://www.enecho.meti.go.jp/category/saving_and_new/saiene/yojo_furyoku/dl/kyougi/hokkaido_matsumae/02_docs06.pdf
    44. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. Action control: From cognition to behavior/Springer. (pp. 11–39). Springer-Verlag.
    45. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
    46. Afonja, A. A. (2020). Fossil Fuels and the Environment. ChudacePublishing.
    47. Akita, N., Ohe, Y., Araki, S., Yokohari, M., Terada, T., & Bolthouse, J. (2020). Managing conflicts with local communities over the introduction of renewable energy: the solar-rush experience in Japan. Land, 9(9), 290. https://doi.org/10.3390/LAND9090290
    48. Bush, M. J. (2019). The overheated earth. In Climate Change and Renewable Energy: How to End the Climate Crisis (pp. 59-108). Springer International Publishing. https://doi.org/10.1007/978-3-030-15424-0_2
    49. Burke, M. J. (2020). Energy-sufficiency for a just transition: a systematic review. Energies, 13(10), 2444. https://doi.org/10.3390/en13102444
    50. Begum, M., Masud, M. M., Alam, L., Mokhtar, M. B., & Amir, A. A. (2022). The adaptation behaviour of marine fishermen towards climate change and food security: an application of the theory of planned behaviour and health belief model. Sustainability, 14(21), 14001. https://doi.org/10.3390/su142114001
    51. Budhathoki, M., Zølner, A., Nielsen, T., Rasmussen, M. A., & Reinbach, H. C. (2022). Intention to buy organic fish among Danish consumers: Application of the segmentation approach and the theory of planned behaviour. Aquaculture, 549, 737798. https://doi.org/10.1016/j.aquaculture.2021.737798
    52. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
    53. Champion, V. L., & Skinner, C. S. (2008). The health belief model. Health behavior and health education: Theory, research, and practice, 4, 45-65.
    54. Claudy, M. C., Peterson, M., & O’driscoll, A. (2013). Understanding the attitude-behavior gap for renewable energy systems using behavioral reasoning theory. Journal of Macromarketing, 33(4), 273-287. https://doi.org/10.1177/0276146713481605
    55. Claudy, M. C., Garcia, R., & O’Driscoll, A. (2015). Consumer resistance to innovation—a behavioral reasoning perspective. Journal of the Academy of Marketing Science, 43, 528-544. https://doi.org/10.1007/s11747-014-0399-0
    56. Chen, C. F., Xu, X., Adams, J., Brannon, J., Li, F., & Walzem, A. (2020). When East meets West: Understanding residents’ home energy management system adoption intention and willingness to pay in Japan and the United States. Energy Research & Social Science, 69, 101616. https://doi.org/10.1016/j.erss.2020.101616
    57. Conradie, P. D., De Ruyck, O., Saldien, J., & Ponnet, K. (2021). Who wants to join a renewable energy community in Flanders? Applying an extended model of Theory of Planned Behaviour to understand intent to participate. Energy Policy, 151, 112121. https://doi.org/10.1016/j.enpol.2020.112121
    58. Chen, H. S., & Kuo, H. Y. (2022). Green energy and water resource management: A case study of fishery and solar power symbiosis in Taiwan. Water, 14(8), 1299. https://doi.org/10.3390/w14081299
    59. Chen, X., & Zhou, W. (2023). Performance evaluation of aquavoltaics in China: Retrospect and prospect. Renewable and Sustainable Energy Reviews, 173, 113109. https://doi.org/10.1016/j.rser.2022.113109
    60. Chen, B. Y., Huang, P. L., Hou, Y. L., Lan, H. Y., Huang, C. T., & Nan, F. H. (2024). The economic feasibility of aquavoltaics in Taiwan-A case study of whiteleg shrimp (Litopenaeus vannamei) culture. Aquaculture, 581, 740454. https://doi.org/10.1016/j.aquaculture.2023.740454
    61. Climate Change Performance Index (2024). Climate Change Performance Index 2025. CCPI. https://ccpi.org/download/climate-change-performance-index-2025/
    62. Energy Institute. (2024). Statistical review of world energy 2024. EI. https://www.energyinst.org/__data/assets/pdf_file/0006/1542714/684_EI_Stat_Review_V16_DIGITAL.pdf
    63. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley.
    64. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
    65. Federal Ministry for Economic Affairs and Climate Action. (2024). Update of the integrated national energy and climate plan: Plan of the Federal Republic of Germany. Government of Germany. https://commission.europa.eu/publications/germany-final-updated-necp-2021-2030-submitted-2024_en
    66. Glanz, K., Rimer, B. K., & Viswanath, K. (2008). Theory, research, and practice in health behavior and health education. In K. Glanz, B. K. Rimer, & K. Viswanath (Eds.), Health behavior and health education: Theory, research, and practice (4th ed., pp. 23–40). Jossey-Bass.
    67. Guido, G., Prete, M. I., Peluso, A. M., Maloumby-Baka, R. C., & Buffa, C. (2010). The role of ethics and product personality in the intention to purchase organic food products: A structural equation modeling approach. International Review of Economics, 57, 79-102. https://doi.org/10.1007/s12232-009-0086-5
    68. Govindan, K., Zhuang, Y., & Chen, G. (2022). Analysis of factors influencing residents' waste sorting behavior: A case study of Shanghai. Journal of Cleaner Production, 349, 131126. https://doi.org/10.1016/j.jclepro.2022.131126
    69. Hair Jr., J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis (5th ed.). Prentice Hall.
    70. Hair, J. F., Black, W. C., & Babin, B. J. (2009). Multivariate data analysis (7th ed.). Prentice Hall.
    71. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson Education.
    72. Handcock, M. S., & Gile, K. J. (2011). Comment: On the concept of snowball sampling. Sociological Methodology, 41(1), 367–371. https://doi.org/10.1111/j.1467-9531.2011.01243.x
    73. Hafshejani, M. K., Baheri, A., Ojakeh, M., Sedighpour, A., Arad, A., Choopani, S., & Branch, D. (2012). Impact of solar energy application on warming, health caring and pollution prevention in Iran. Life Science Journal, 9(4), 1849-1853. https://www.researchgate.net/publication/279701771_Impact_of_solar_energy_application_on_warming_health_caring_and_pollution_prevention_in_Iran
    74. Hake, J. F., Fischer, W., Venghaus, S., & Weckenbrock, C. (2015). The German Energiewende–History and status quo. Energy, 92, 532–546. https://doi.org/10.1016/j.energy.2015.04.027
    75. Ho, C. H., Chen, J. L., Yagi, N., Lur, H. S., & Lu, H. J. (2016). Mitigating uncertainty and enhancing resilience to climate change in the fisheries sector in Taiwan: Policy implications for food security. Ocean & Coastal Management, 130, 355–372. https://doi.org/10.1016/j.ocecoaman.2016.06.020
    76. Hair, J., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial management & data systems, 117(3), 442-458-https://doi.org/10.1108/IMDS-04-2016-0130
    77. Hasegawa, T., Fujimori, S., Havlík, P., Valin, H., Bodirsky, B. L., Doelman, J. C., ... & Witzke, P. (2018). Risk of increased food insecurity under stringent global climate change mitigation policy. Nature climate change, 8(8), 699-703. https://doi.org/10.1038/s41558-018-0230-x
    78. Hsiao, Y. J., Chen, J. L., & Huang, C. T. (2021). What are the challenges and opportunities in implementing Taiwan's aquavoltaics policy? A roadmap for achieving symbiosis between small-scale aquaculture and photovoltaics. Energy Policy, 153, 112264. https://doi.org/10.1016/j.enpol.2021.112264
    79. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). SAGE Publications.
    80. Hermann, C., Dahlke, F., Focken, U., & Trommsdorff, M. (2022). Aquavoltaics: Dual use of natural and artificial water bodies for aquaculture and solar power generation. In Solar Energy Advancements in Agriculture and Food Production Systems (pp. 211-236). Academic Press. https://doi.org/10.1016/B978-0-323-89866-9.00009-2
    81. Intergovernmental Panel on Climate Change. (2007). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson, Eds.). Cambridge University Press.
    82. International Energy Agency. (2013). Energy policies of IEA countries: Germany 2013 review. IEA. https://www.iea.org/reports/energy-policies-of-iea-countries-germany-2013-review
    83. Intergovernmental Panel on Climate Change. (2023). Food, Fibre and Other Ecosystem Products. In Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 713–906). Cambridge University Press. https://doi.org/10.1017/9781009325844.007
    84. International Renewable Energy Agency. (2023). World energy transitions outlook 2023: 1.5°C pathway (Vol. 1). IRENA. https://www.irena.org/publications/2023/Jun/World-Energy-Transitions-Outlook-2023
    85. International Renewable Energy Agency. (2024). World energy transitions outlook 2024: 1.5°C pathway. IRENA. https://www.irena.org/Publications/2024/Nov/World-Energy-Transitions-Outlook-2024
    86. International Energy Agency. (2025). Global energy review 2025. IEA. https://www.iea.org/reports/global-energy-review-2025
    87. Jurca, A. M. (2014). The Energiewende: Germany's transition to an economy fueled by renewables. Georgetown International Environmental Law Review, 27, 141–160. https://heinonline.org/HOL/LandingPage?handle=hein.journals/gintenlr27&div=9&id=&page=
    88. Jamil, U., & Pearce, J. M. (2022). Energy policy for agrivoltaics in Alberta Canada. Energies, 16(1), 53. https://doi.org/10.3390/en16010053
    89. Jalalov, M., & Bae, J. H. (2025). Exploring the motivations behind corporate participation in the RE100 initiative and its impact on financial performance. Energy Policy, 198, 114503. https://doi.org/10.1016/j.enpol.2025.114503
    90. Kim, S., & Kim, S. (2023). Optimization of the design of an agrophotovoltaic system in future climate conditions in South Korea. Renewable Energy, 206, 928-938. https://doi.org/10.1016/j.renene.2023.02.090
    91. Lincke, D., & Hinkel, J. (2018). Economically robust protection against 21st century sea-level rise. Global environmental change, 51, 67-73.-https://doi.org/10.1016/j.gloenvcha.2018.05.003
    92. Liobikienė, G., Dagiliūtė, R., & Juknys, R. (2021). The determinants of renewable energy usage intentions using theory of planned behaviour approach. Renewable Energy, 170, 587-594. https://doi.org/10.1016/j.renene.2021.01.152
    93. Li, J., Chen, C. F., Walzem, A., Nelson, H., & Shuai, C. (2022). National goals or sense of community? Exploring the social-psychological influence of household solar energy adoption in rural China. Energy Research & Social Science, 89, 102669. https://doi.org/10.1016/j.erss.2022.102669
    94. Lee, D., Schelly, C., Gagnon, V. S., Smith, S., & Tiwari, S. (2023). Preferences and perceived barriers to pursuing energy sovereignty and renewable energy: A tribal nations perspective. Energy Research & Social Science, 97, 102967. https://doi.org/10.1016/j.erss.2023.102967
    95. Lee, C. L., Kao, S. X., & Fan, C. T. (2024). Addressing the wicked problem of energy policy: A data-driven approach using the analytic hierarchy process in aquavoltaics policy of Taiwan. WIT Transactions on Ecology and the Environment, 262, 33–45. https://doi.org/10.2495/SDP240031
    96. Moss, J., Coram, A., & Blashki, G. (2014). Solar energy in Australia: Health and environmental costs and benefits. The Australia Institute. https://apo.org.au/node/42783
    97. Mirahmadizadeh, A., Delam, H., Seif, M., & Bahrami, R. (2018). Designing, constructing, and analyzing Likert scale data. Journal of Education and Community Health, 5(3), 63-72. https://doi.org/10.21859/jech.5.3.63
    98. Mahdavi, T. (2021). Application of the ‘theory of planned behavior’ to understand farmers’ intentions to accept water policy options using structural equation modeling. Water Supply, 21(6), 2720–2734. https://doi.org/10.2166/ws.2021.138
    99. Muluneh, M. G. (2021). Impact of climate change on biodiversity and food security: A global perspective—a review article. Agriculture & Food Security, 10(36). https://doi.org/10.1186/s40066-021-00318-5
    100. Mouhib, E., Micheli, L., Almonacid, F. M., & Fernández, E. F. (2022). Overview of the fundamentals and applications of bifacial photovoltaic technology: Agrivoltaics and aquavoltaics. Energies, 15(23), 8777. https://doi.org/10.3390/en15238777
    101. Nunnally, J. C. (1978). Psychometric theory (2nd ed.). McGraw-Hill.
    102. Oksenberg, L., Cannell, C., & Kalton, G. (1991). New strategies for presting survey questions. Journal of Official Statistics, 7(3), 349. https://www.researchgate.net/publication/312619242_New_strategies_for_pretesting_survey_questions
    103. Ohta, H., & Barrett, B. F. (2023). Politics of climate change and energy policy in Japan: Is green transformation likely? Earth System Governance, 17, 100187. https://doi.org/10.1016/j.esg.2023.100187
    104. Park, E., & Ohm, J. Y. (2014). Factors influencing the public intention to use renewable energy technologies in South Korea: Effects of the Fukushima nuclear accident. Energy policy, 65, 198-211. https://doi.org/10.1016/j.enpol.2013.10.037
    105. Pringle, A. M., Handler, R. M., & Pearce, J. M. (2017). Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture. Renewable and Sustainable Energy Reviews, 80, 572-584.-https://doi.org/10.1016/j.rser.2017.05.191
    106. Proudlove, R., Finch, S., & Thomas, S. (2020). Factors influencing intention to invest in a community owned renewable energy initiative in Queensland, Australia. Energy Policy, 140, 111441. https://doi.org/10.1016/j.enpol.2020.111441
    107. Rosenstock, I. M., Strecher, V. J., & Becker, M. H. (1994). The health belief model and HIV risk behavior change. In Preventing AIDS: Theories and methods of behavioral interventions (pp. 5-24). Springer US.
    108. Rogge, K. S., & Johnstone, P. (2017). Exploring the role of phase-out policies for low-carbon energy transitions: The case of the German Energiewende. Energy research & social science, 33, 128-137. https://doi.org/10.1016/j.erss.2017.10.004
    109. REN21 (2021). Renewables 2021: Global status report. http://www.unep.org/resources/report/renewables-2021-global-status-report.
    110. Raihan, A. (2023). A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors. Journal of Environmental Science and Economics, 2(3), 36–58. https://doi.org/10.56556/jescae.v2i3.587
    111. REN21. (2024). Renewables 2024 global status report: Renewable energy in energy supply. REN21. https://www.ren21.net/gsr-2024/
    112. Soeder, D. J. (2020). Fossil fuels and climate change. In Fracking and the Environment: A scientific assessment of the environmental risks from hydraulic fracturing and fossil fuels (pp. 155-185). Springer International Publishing.
    113. Sampurna, A. F., & Wijaya, C. (2023). Using the theory of planned behavior to understand paddy rice farmers' intention to participate in Warehouse Receipt System. Jurnal Natapraja: Kajian Ilmu Administrasi Negara, 11(1), 39–51. https://doi.org/10.21831/natapraja.v11i1.59953
    114. Scheller, F., Morrissey, K., Neuhoff, K., & Keles, D. (2024). Green or greedy: the relationship between perceived benefits and homeowners’ intention to adopt residential low-carbon technologies. Energy Research & Social Science, 108, 103388. https://doi.org/10.1016/j.erss.2023.103388
    115. Song, E., Lee, M. S., Park, J., & Lee, H. (2024). Translating pro-environmental intention to behavior: The role of moral licensing effect. Sustainable Production and Consumption, 52, 527-540. https://doi.org/10.1016/j.spc.2024.11.018
    116. United Nations Framework Convention on Climate Change. (2015). Paris Agreement. UNFCCC. https://unfccc.int/sites/default/files/english_paris_agreement.pdf
    117. United Nations Framework Convention on Climate Change. (2021). COP26. UNFCCC. https://unfccc.int/event/cop-26#decisions_reports
    118. Vibrans, L., Schulte, E., Morrissey, K., Bruckner, T., & Scheller, F. (2023). Same same, but different: explaining heterogeneity among potential photovoltaic adopters in Germany using milieu segmentation. Energy Research & Social Science, 103, 103212. https://doi.org/10.1016/j.erss.2023.103212
    119. Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29(3/4), 350–362. https://doi.org/10.2307/2332010
    120. Welch, B. L. (1951). On the comparison of several mean values: An alternative approach. Biometrika, 38(3/4), 330–336. https://doi.org/10.2307/2332579
    121. Wen, L., Lin, C. H., & Lee, Y. C. (2023). Are aquavoltaics investable? A framework for economic and environmental cost-benefit analysis. Sustainability, 15(11), 8965. https://doi.org/10.3390/su15118965
    122. Wong, G. Z., Wong, K. H., Lau, T. C., Lee, J. H., & Kok, Y. H. (2024). Study of intention to use renewable energy technology in Malaysia using TAM and TPB. Renewable Energy, 221, 119787. https://doi.org/10.1016/j.renene.2023.119787
    123. World Meteorological Organization. (2025, January 10). WMO confirms 2024 as warmest year on record at about 1.55°C above pre-industrial level. WMO. https://wmo.int/news/media-centre/wmo-confirms-2024-warmest-year-record-about-155degc-above-pre-industrial-level
    124. Yamineva, Y., & Löther, N. (2024). The UNFCCC and the Paris Agreement. In Elgar Encyclopedia of Climate Policy (pp. 249-252). Edward Elgar Publishing. https://doi.org/10.4337/9781802209204.ch47
    125. Zhang, L., Ruiz-Menjivar, J., Luo, B., Liang, Z., & Swisher, M. E. (2020). Predicting climate change mitigation and adaptation behaviors in agricultural production: A comparison of the theory of planned behavior and the Value-Belief-Norm Theory. Journal of Environmental Psychology, 68, 101408. https://doi.org/10.1016/j.jenvp.2020.101408
    126. Zhao, Y., Xu, Z., Liu, Y., & Chen, T. (2024). Analysis of the Behavioral Intention and Influencing Factors of Farmers Replacing Coal with Electricity in the Context of Carbon Neutrality: the Case Study in Yulin City. Polish Journal of Environmental Studies, 33(2). https://doi.org/10.15244/pjoes/173103

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE