| 研究生: |
江崇豪 Chiang, Chung-Hao |
|---|---|
| 論文名稱: |
BaZrSi3O9與Ca6BaP4O17螢光粉之合成與發光特性分析及其應用於近紫外激發白色發光二極體 The Synthesis and Luminescent Properties of BaZrSi3O9/Ca6BaP4O17 Phosphors for Near-ultraviolet Based White Light-emitting Diodes |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 螢光粉 、白色發光二極體 、發光特性 、出光均勻性 |
| 外文關鍵詞: | BaZrSi3O9, Ca6BaP4O17, phosphor, pc-WLED |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了提升目前常用之白光LED元件 (blue LED+YAG: Ce3+)之演色性,利用近紫外LED驅動多色螢光粉為一可行的方式,因此本研究利用固態反應法合成適用於近紫外激發之矽酸鹽類藍綠色螢光粉與磷酸鹽類黃、橘紅色螢光粉。本研究分為三個部份,第一部分,本研究發現藉由摻雜與Eu2+離子半徑較為接近的Sr2+離子取代BaZrSi3O9:Eu2+的Ba2+離子可以提升Eu2+摻雜於主體的固溶度,進而增加其發光強度。此外,為了提升BaZrSi3O9:Eu2+螢光粉的熱穩定性,藉由摻雜Hf4+離子,部分取代Zr4+離子,增加螢光粉的熱穩定性,然而,雖然摻雜Hf4+離子可以增加此螢光粉的熱穩定性,但同時也伴隨著雜相生成而降低發光效率,因此加入助熔劑提升螢光粉主體的相純度,於加入助熔劑6 wt%時,可達到兼具發光強度與熱穩定性提升之目的,可將Ba0.94Zr0.9Hf0.1Si3O9:0.06Eu2+的發光強度提升12.4%並將活化能從0.374 提升到 0.397電子伏特。
第二部分為合成黃色、橘紅色以Ca6BaP4O17為主體的螢光粉。於橘紅色磷酸鹽螢光粉部分,藉由摻雜Sm3+於Ca6BaP4O17主體,可得到三個波段567, 602, and 650 nm為主的窄譜光譜,並藉由共摻雜一價鹼金屬(Na+、Li+)做電荷補償,除了可以提升其發光強度,同時也增加其熱穩定性,於操作溫度200 oC時,能可保有93%之發光強度;此外本研究也發先於合成Ca6BaP4O17:Sm3+螢光粉時,藉由通入Ar惰性氣體,可以增加Sm3+離子的固溶度讓濃度粹滅點從0.12 mol降低至0.06 mol,進一步提升發光強度。於黃色磷酸鹽螢光粉部分,則選擇摻雜Eu2+於Ca6BaP4O17主體,藉由去離子水修飾原始物料使其混合更為均勻,讓原子間更易轉移、反應溫度降低,進而提升螢光粉之相純度,進而提升發光強度11.9%。
第三部分為將螢光粉結合矽膠製作白光LED元件,主要分為兩種元件,第一種為螢光層分層結構,將藍綠色矽酸鹽類螢光粉結合商用紅色螢光粉,利用分層螢光粉層結構製作高演色性白光LED,最高演色性可達93.8、色溫可由2908K調變至4902K,第二種為新型圓臺式封裝,藉由圓臺式封裝,可讓白光LED的出光均勻性更為均勻,藉由較大體積之螢光粉層,也可降低螢光粉的使用量。利用配光曲線量測,對於各角度所量測的色溫做標準差計算,可藉此判斷LED元件的色溫均勻性。而相較於傳統式點膠封裝方式,圓臺式封裝的各角度色溫標準差可從1246K 降低至51K。
Commercial white light-emitting diodes (WLEDs) were fabricated by blue GaN (450–470 nm) chips coating with commercial yellow garnet phosphors (YAG:Ce3+). This method is well known that this combination lacks of red emission spectrum component leading to the white light with poor color rendering index (CRI) and high correlated color temperature (CCT). To solve the CRI and CCT problem of WLEDs (blue LED + YAG: Ce3+), developing multi-chromatic phosphors combing with near-ultraviolet (near-UV) InGaN LED chip (370 – 410 nm) is an alternative method. This thesis is composed of three parts. Part (1), doping Sr2+ into BaZrSi3O9:Eu2+ blue-green phosphor can enhance the emission intensity due to the solid solubility improvement. Besides, in order to improve the thermal stability of BaZrSi3O9:Eu2+ blue-green phosphors, Hf4+ dopants were introduced to substitute Zr4+ site to enhance the activation energy of BaZrSi3O9:Eu2+ phosphors. However, there were impurity phase forming due to the Hf4+ doping. Hence, the NH4Cl flux additives were added for better phase formation. The emission intensity and thermal stability could simultaneously be enhanced when the flux concentration being 6 wt%. The integrated emission intensity of Ba0.94Zr0.9Hf0.1Si3O9:0.06Eu2+ was enhanced 12.4% with NH4Cl flux additive. Furthermore, the activation energy was improved from 0.374 to 0.397 eV.
Part (2), orange-reddish and yellow Ca6BaP4O17 based phosphate phosphors were synthesized. The Ca6BaP4O17:Sm3+ orange-reddish phosphors can be excited by 405 nm near-UV LED chip, and their emission spectrum consists of three emission peaks, at 567, 602, and 650 nm, respectively. The emission intensities and thermal stabilities could be enhanced by codoping alkali metal ions A+ (A = Na and Li) as charge compensators. The integrated emission intensities of Na-codoped and Li-codoped samples under the temperature of 200 °C were still 91% and 93% of that measured at room temperature. In addition, by introducing Ar atmosphere during the synthesizing process, the emission intensity of Ca6BaP4O17:Sm3+ phosphor was improved 2.27-fold. Besides, the concentration quenching point of Ca6BaP4O17:Sm3+ was decreased form 12 mol% to 6 mol%. For Ca6BaP4O17:Eu2+ yellow phosphors, deionized water was used to modify the raw materials for getting a purer phase of phosphors. Hence, the integrated emission intensity was also improved 11.9% because the reaction temperature getting lower leading to the improved yield.
In Part (3), white light-emitting diodes are fabricated using 405 UV LED chips and proposed phosphors with two different structures. (I) Phosphor-converted white light-emitting diodes (pc-WLEDs) were fabricated using two separated phosphor layers (B&G up/R down) that combine three color phosphors (blue, green, and red) with near-ultraviolet light-emitting diode chips. The pc-WLEDs have a high color rendering index (93.8) and tunable color temperature (2908–4902K). (II) The frustum-shaped phosphor gels were coated on LED chip to improve the emitting light intensity and uniformity compared to pc-WLEDs fabricated by using conventional packaging method. The results indicated that pc-WLEDs with frustum-shaped packaging method show better uniformity and emitting light intensity than those with conventional packaging method. The standard deviations of CCT at various view angles were reduced form 1246K to 51K for the samples using conventional and frustum-shaped packaging methods, respectively.
[1] C. Ronda, "Luminescence: from theory to applications." Weinheim: Wiley-VCH,
(2008).
[2] S. Nakamura, M. Senoh, and T. Mukai, "High power InGaN/GaN double heterostructure violet light emitting diodes," Appl. Phys. Lett., 62, 2390 (1993).
[3] R.-J. Xie, Y. Q. Li, N. Hirosaki, and H. Yamamoto, "Nitride Phosphors and Solid
State Lighting." CRC Press, Taylor & Francis (2011).
[4] Liu, R.-S. Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications, Springer: 2016; Vol. 1.
[5] P.F. Smet, A.B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc., 158, R37 (2011).
[6] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D-Appl. Phys., 43, 354002 (2010).
[7] E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science, 308(5726), 1274 (2005).
[8] Y.-C. Fang, S.-Y. Chu, P.-C. Kao, Y.-M. Chuang, and Z.-L. Zeng, "Energy Transfer and Thermal Quenching Behaviors of CaLa2(MoO4)4: Sm3+,Eu3+ Red Phosphors," J. Electrochem. Soc., 158, J1 (2011).
[9] C.-H. Chiang, H.-Y. Lin, and S.-Y. Chu, “Cross Relaxation of Sm3+ and Energy Transfer between Sm3+ and Eu3+ Ions in (Ca0.97Sr0.03)3(VO4)2 Phosphor Host,” J. Am. Ceram. Soc., 97, 3737 (2014).
[10] C.-H. Chiang, S.-J. Gong, H.-Y. Lin, T.-S. Zhan, and S.-Y. Chu, “Effects of Sr2+ substitution on photoluminescence characteristics of Ba1-x-ySryZrSi3O9:xEu2+ Phosphors,” J. Appl. Phys., 16, 223507 (2014).
[11] C.-H. Chiang, H.-Y. Tsai, , T.-S. Zhan, H.-Y. Lin, Y.-C. Fang, and S.-Y. Chu, “Effects of phosphor distribution and step-index remote configuration on the performance of white light-emitting diodes,” Opt. Lett., 40, 2830 (2015).
[12] C.-H. Chiang, S.-J. Gong, T.-S. Zhan, K.-C. Cheng, and S.-Y. Chu, “White Light-Emitting Diodes With High Color Rendering Index and Tunable Color Temperature Fabricated Using Separated Phosphor Layer Structure,” IEEE Electron Device Lett., 37, 898 (2016).
[13] C.-H. Chiang, Y.-C. Fang, H.-Y. Lin, S.-Y. Chu, “Photoluminescence properties and thermal stability of samarium-doped barium phosphate phosphors,” Ceram. Int., 43, 4353 (2017).
[14] C.-H. Chiang, Y.-C. Fang, and S.-Y. Chu, “Effect of Charge Compensation on the Photoluminescence and Thermal Stability of Trivalent Samarium-Doped Calcium Barium Phosphate Phosphors,” ECS J. Solid State Sci. Technol., 6 (9), R115-R121 (2017).
[15] C.-H. Chiang, H.-H. Su, Y.-C. Fang, S.-Y. Chu, “Effects of argon sintering atmosphere on luminescence characteristics of Ca6BaP4O17:Sm3+ phosphors,” Ceram. Int., 44, 6278-6284 (2018).
[16] G. Blasse and B. Grabmaier, "Luminescent materials." Springer, Berlin, German,
(1994).
[17] S. Shionoya, W. M. Yen, and T. Hase, "Phosphor handbook." CRC press, New York, (1999).
[18] J. Sole, L. Bausa, and D. Jaque, "An introduction to the optical spectroscopy of
inorganic solids." Wiley, (2005).
[19] Y.-C. Fang, P.-C. Kao, Y.-C. Yang, and S.-Y. Chu, "Two-Step Synthesis of SrSi2O2N2: Eu2+ Green Oxynitride Phosphor: Electron-Phonon Coupling and Thermal Quenching Behavior," J. Electrochem. Soc., 158, J246 (2011).
[20] Y. Fukuda, K. Ishida, I. Mitsuishi, and S. Nunoue, "Luminescence Properties of
Eu2+-Doped Green-Emitting Sr-Sialon Phosphor and Its Application to White Light-Emitting Diodes," Appl. Phys. Express, 2, 2401 (2009).
[21] A. H. Kitai, "Solid state luminescence: theory, materials, and devices," 1st ed.
Chapman & Hall, (1993).
[22] D. L. Dexter, "A Theory of Sensitized Luminescence in Solids," J. Chem. Phys., 21, 836 (1953).
[23] P. Paulose, G. Jose, V. Thomas, N. Unnikrishnan, and M. Warrier, "Sensitized
fluorescence of Ce3+/Mn2+ system in phosphate glass," J. Phys. Chem. Solids, 64, 841
(2003).
[24] P. Biju, G. Jose, V. Thomas, V. Nampoori, and N. Unnikrishnan, "Energy transfer in Sm3+: Eu3+ system in zinc sodium phosphate glasses," Opt. Mater., 24, 671 (2004).
[25] G. Blasse, "Energy transfer in oxidic phosphors," Philips Res. Rep., 24, 131 (1969).
[26] H. Jiao, F. Liao, S. Tian, and X. Jing, "Luminescent properties of Eu3+ and Tb3+
activated Zn3Ta2O8," J. Electrochem. Soc., 150, H220 (2003).
[27] X. Yang, J. Liu, H. Yang, X. Yu, Y. Guo, Y. Zhou, and J. Liu, "Synthesis and characterization of new red phosphors for white LED applications," J. Mater. Chem., 9, 3771 (2009).
[28] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, U. S. Patent: US5998925 A, (7 December 1997).
[29] H.-Y. Lin, Y.-C. Fang, X.-R. Huang, and S.-Y. Chu, “Luminescence and Site Symmetry Studies of New Red Phosphors (Ca, Ba)3(VO4)2:Eu3+ Under Blue Excitation,” J. Am. Ceram. Soc. 93, 138 (2010).
[30] X. Zhang and M. Gong, “Eu2+-doped halo-phosphate/borate phosphors for color temperature tunable near UV-based white light-emitting diodes,” Mater. Chem. Phys., 124, 1243-1247 (2010).
[31] H.-Y. Jiao and Y.-H. Wang, “A potential red-emitting phosphor CaSrAl2SiO7:Eu3+ for near-ultraviolet light-emitting diodes,” Physica B, 407, 2729-2733 (2012).
[32] M. Grinberg, J. Barzowska, A. Baran, and B. Kuklinski, “Characterization of various Eu2+ sites in Ca2SiO4:Eu2+ and Ba2SiO4:Eu2+ by high-pressure spectroscopy,” Mater. Sci., 29, 272-277 (2011).
[33] Y. H. Song, E. J. Chung, S. H. Song, M. K. Jung, K. Senthil, T. Masaki, and D. H. Yoon, “Enhancement of photoluminescent properties of green-emitting (Ba2−xSrx)SiO4 silicate phosphor using Eu2O3@B2O3 core–shells for white LED applications,” Mater. Lett., 110, 34-37 (2013).
[34] T. T. H. Tam, N. V. Du, N. D. T. Kien, C. X. Thang, N. D. Cuong, P. T. Huy, N. D. Chien, and D. H. Nguyen, “Co-precipitation synthesis and optical properties of green-emitting Ba2MgSi2O7:Eu2+ phosphor,” J. Lumines., 147, 358-362 (2014).
[35] X. Zhang, J. Zhang, R. Wang, and M. Gong, “Photo-Physical Behaviors of Efficient Green Phosphor Ba2MgSi2O7:Eu2+ and Its Application in Light-Emitting Diodes,” J. Am. Ceram. Soc., 93, 1368-1371 (2010).
[36] T. Kim, Y. Kim, and S. Kang, “Luminescence properties of Eu2+ in M2MgSi2O7 (M=Ca, Sr, and Ba) phosphors,” Appl. Phys. B-Lasers Opt., 106, 1009-1013 (2012).
[37] G. Blasse and A. Bril, “Fluorescence and structure of barium zirconium trisilicate,” J. Solid State Chem., 2, 105-108 (1970).
[38] Y. Takahashi, H. Masai, T. Fujiwara, K. Kitamura and S. Inoue, “Afterglow in synthetic bazirite, BaZrSi3O9,” J. Ceram. Soc. Jpn., 116, 357-360 (2008).
[39] D.-Y. Wang, C.-H. Huang, Y.-C. Wu, and T.-M. Chen, “BaZrSi3O9:Eu2+: a cyan-emitting phosphor with high quantum efficiency for white light-emitting diodes,” J. Mater. Chem., 21, 10818-10822 (2011).
[40] D.-Y. Wang, Y.-C. Wu, and T.-M. Chen, “Synthesis, crystal structure, and photoluminescence of a novel blue-green emitting phosphor: BaHfSi3O9:Eu2+,” J. Mater. Chem., 21, 18261-18265 (2011).
[41] S. Ye, C. H. Wang, Z. S. Liu, J. Lu, and X. P. Jing, “Photoluminescence and energy transfer of phosphor series Ba2-zSrzCaMo1-yWyO6:Eu,Li for white light UVLED applications,” Appl. Phys. B-Lasers Opt., 91, 551-557 (2008).
[42] A. Baran, J. Barzowska, M. Grinberg, S. Mahlik, K. Szczodrowski, Y. Zorenko, “Binding energies of Eu2+ and Eu3+ ions in β-Ca2SiO4 doped with europium,” Opt. Mater., 35, 2107-2114 (2013).
[43] A. Baran, S. Mahlik, M. Grinberg, P. Cai, S. I. Kim, and H. J. Seo, “Luminescence properties of different Eu sites in LiMgPO4:Eu2+, Eu3+,” J. Phys.-Condes. Matter, 26, 385401 (2014).
[44] S.-A. Yan, Y.-S. Chang, W.-S. Hwang, and Y.-H. Chang, “Enhancement of luminescence properties via the substitution of Ba2+ by Sr2+ and Ca2+ in the white phosphors Ba1−yMyLa2−xWO7:xDy3+ (M=Sr, Ca) (x=0.01–0.4, y=0–0.4),” J. Lumines., 132, 1867-1872 (2012).
[45] H.-Y. Lin, H.-N. Chen, T.-H. Wu, C.-S. Wu, Y.-K. Su, and S.-Y. Chu, “Investigation of Green Up-Conversion Behavior in Y6W2O15:Yb3+,Er3+ Phosphor and its Verification in 973-nm Laser-Driven GaAs Solar Cell,” J. Am. Ceram. Soc., 95, 3172–3179 (2012).
[46] J. Kacher, C. Landon, B. L. Adams, and D. Fullwood, “Bragg's Law diffraction simulations for electron backscatter diffraction analysis,” Ultramicroscopy, 109, 1148-1156 (2009).
[47] J. K. Han, A. Piqutte, M. E. Hannah, G. A. Hirata, J. B. Talbot, K. C. Mishra, and J. McKittrick, “Analysis of (Ba,Ca,Sr)3MgSi2O8:Eu2+, Mn2+ phosphors for application in solid state lighting,” J. Lumines. ,148, 1-5 (2014).
[48] L.-B. Pang, S.-J. Gao, Z.-J. Gao, H.-L. Li, and Z.-J. Wang, “A novel white-bluish emitting phosphor of (Ba0.49Sr0.49)2-B2P2O10:0.02Eu2+ for white LEDs,” Optoelectron. Lett., 9, 282-284 (2013).
[49] J. Qin, C. Hu, B. Lei, J. Li, Y. Liu, S. Ye, and M. Pan, “Temperature-Dependent Luminescence Characteristic of SrSi2O2N2:Eu2+ Phosphor and Its Thermal Quenching Behavior,” J. Mater. Sci. Technol., 30, 290-294 (2014).
[50] K.-B. Kim, Y.-I. Kim, H.-G. Chun, T.-Y. Cho, J.-S. Jung, and J.-G. Kang, “Structural and Optical Properties of BaMgAl10O17:Eu2+ Phosphor,” Chem. Mater., 14, 5045-5052 (2002).
[51] H.-Y. Lin, S.-Y. Chu, Down-Shifting and Up-Conversion Spectroscopic Properties of (Ca,Mg)3(VO4)2:Yb3+,Eu3+ Phosphors, J. Am. Ceram. Soc., 95(11), 3538 (2012).
[52] R. C. Ropp, Luminescence and the solid state (Elsevier Science Publishers, The Netherlands, 1991) p.299-305.
[53] Y. Jin, Y. Hu, L. Chen, and X. Wang, “Luminescence properties of long persistent phosphors BaZrSi3O9:R3+ (R=Eu, Sm, Dy, Tb and Pr) based on host sensitization,” Opt. Mater., 36, 1814(2014).
[54] Jin Young Park, Kyoo Sung Shim, Jae Su Yu, and Hyun Kyoung Yang, “Cyan-emitting BaZrSi3O9:Eu2+phosphors for near-UV based white light-emitting diodes,” Mater. Lett., 173, 68-71(2016).
[55] K.-B. Kim, Y.-I. Kim, H.-G. Chun, T.-Y. Cho, J.-S. Jung, J.-G. Kang, Structural and Optical Properties of BaMgAl10O17:Eu2+ Phosphor, Chem. Mater., 14 (12), 5045-5052 (2002).
[56] L. Qi, B.I. Lee, J.M. Kim, J.E. Jang, J.Y. Choe, “Synthesis and characterization of ZnS:Cu,Al phosphor prepared by a chemical solution method,” J. Lumines., 104(4) 261 (2003).
[57] C. Feldmann, T. Jüstel, C.R. Ronda, P.J. Schmidt, “Inorganic Luminescent Materials: 100 Years of Research and Application,” Adv. Funct. Mater., 13(7), 511 (2003).
[58] Z.-M. Li, L.-G. Deng, S.-C. Zhao, S.-Q. Zhang, C.-Y. Guo, J.-Y. Liang, H. Yue, C.-Y. Wan, “Photoluminescence properties of a new orange–red-emitting Sm3+–La3SbO7 phosphor,” Luminescence, 31(2), 462 (2016).
[59] Z.-w. Zhang, Y.-n. Wu, X.-h. Shen, Y.-j. Ren, W.-g. Zhang and D.-j. Wang, “Enhanced novel orange red emission in Ca3(PO4)2:Sm3+ by charge compensation,” Opt. Laser Technol., 62, 63 (2014).
[60] V. R. Bandi, B. K. Grandhe, K. Jang, H.-S. Lee, S.-S. Yi and J.-H. Jeong, “Citric based sol-gel synthesis and photoluminescence properties of un-doped and Sm3+ doped Ca3Y2Si3O12 phosphors,” Ceram. Int., 37, 2001 (2011).
[61] J. Sun, J. Zeng, Y. Sun, J. Zhu and H. Du, “Synthesis and luminescence properties of novel Y2Si4N6C:Sm3+ carbonitride phosphor,” Ceram. Int., 39, 1097 (2013).
[62] C.C. Lin, Z.R. Xiao, G.-Y. Guo, T.-S. Chan, R.-S. Liu, “Versatile Phosphate Phosphors ABPO4 in White Light-Emitting Diodes: Collocated Characteristic Analysis and Theoretical Calculations,” J. Am. Ceram. Soc., 132(9), 3020 (2010).
[63] H.J. Song, D.K. Yim, H.-S. Roh, I.S. Cho, S.-J. Kim, Y.-H. Jin, H.-W. Shim, D.-W. Kim, K.S. Hong, “RbBaPO4:Eu2+: a new alternative blue-emitting phosphor for UV-based white light-emitting diodes,” J. Mater. Chem. C, 1(3), 500 (2013).
[64] N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithell and A. K. Cheetham, “Synthesis, structure and optical properties of europium doped calcium barium phosphate – a novel phosphor for solid-state lighting,” J. Mater. Chem. C, 2, 6084-6089 (2014).
[65] N. Komuro, M. Mikami, Y. Shimomura, E.G. Bithell, A.K. Cheetham, “Synthesis, structure and optical properties of cerium-doped calcium barium phosphate - a novel blue-green phosphor for solid-state lighting,” J. Mater. Chem. C, 3(1), 204 (2015).
[66] H. Guo, W. Chen, W. Zeng, G. Li, Y. Wang, Y. Li, Y. Li, X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C, 3(22), 5844 (2015).
[67] H. Guo, Y. Wang, W. Chen, W. Zeng, G. Li, Y. Li, “Ca6BaP4O17:Eu2+,Gd3+: a yellow emitting long-lasting phosphor with high brightness and long afterglow duration,” New J. Chem., 40(1), 613 (2016).
[68] M. Chen, Z. Xia, Q. Liu, “Luminescence properties and energy transfer of Ce3+/Tb3+ co-doped Ca6Ba(PO4)4O phosphor for near-UV pumped light-emitting diodes,” J. Mater. Chem. C, 3(16), 4197 (2015).
[69] Y. Zhao, C.C. Lin, Y. Wei, T.-S. Chan, G. Li, “Energy transfer induced improvement of luminescent efficiency and thermal stability in phosphate phosphor,” Opt. Express, 24(4), 4316 (2016).
[70] S. Saha, S. Das, U. K. Ghorai, N. Mazumder, B. K. Gupta and K. K. Chattopadhyay, “Charge compensation assisted enhanced photoluminescence derived from Li-codoped MgAl2O4:Eu3+ nanophosphors for solid state lighting applications,” Dalton Trans., 42, 12965 (2013).
[71] Z. Wang, S. Lou and P. Li, “Improvement of the red emitting phosphor by introducing A+ (A = Li, Na, K) into Sr3La(PO4)3:Eu3+,” J. Alloy. Compd., 658, 813 (2016).
[72] J. Van Vliet, G. Blasse and L. Brixner, “Luminescence properties of alkali europium double tungstates and molybdates AEuM2O8,” J. Solid State Chem., 76, 160 (1988).
[73] H.-Y. Lin, S.-Y. Chu, “Concentration Dependence of Multipolar Mechanisms Responsible for Sm3+ → Eu3+ Energy Transfer in (Ca0. 97-3x/5.64Sr0.03)2.82(VO4)2:0.12Eu3+, xSm3+ Phosphors,” ECS J. Solid State Sci. Technol., 2(7), R121 (2013).
[74] M. D. Chambers, D. R. Clarke, “Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry,” Ann. Rev. Mater. Res., 39(1), (2009) 325-359.
[75] C.-H. Hsu, B.-M. Cheng, C.-H. Lu, “Photoluminescent Properties and Energy Transfer Mechanism of Color-Tunable CaSi2O2N2:Ce3+, Eu2+ Phosphors,” J. Am. Ceram. Soc., 94(9), 2878 (2011).
[76] M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys., 86(7), 3721 (1999).
[77] J. Ueda, S. Tanabe, “Visible to near infrared conversion in Ce3+–Yb3+ Co-doped YAG ceramics,” J. Appl. Phys., 106(4), 043101(2009).
[78] Y.-F. Wu, Y.-H. Chan, Y.-T. Nien, I.-G. Chen, “Crystal Structure and Optical Performance of Al3+ and Ce3+ Codoped Ca3Sc2Si3O12 Green Phosphors for White LEDs,” J. Am. Ceram. Soc., 96(1), 234 (2013).
[79] G.S. Maciel, A. Patra, “Influence of nanoenvironment on luminescence lifetime of Er3+-activated ZrO2 nanocrystals,” J. Opt. Soc. Am. B-Opt. Phys, 21(3), 681 (2004).
[80] H. Y. Lin, Y. C. Fang and S. Y. Chu, “Energy Transfer Sm3+→Eu3+ in Potential Red Phosphor (Ca, Ba)3(VO4)2:Sm3+, Eu3+ for Use in Organic Solar Cells and White Light-Emitting Diodes,” J. Am. Ceram. Soc., 93, 3850 (2010).
[81] R. T. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, 32, 751 (1976).
[82] M. Peng, Z. Pei, G. Hong and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4∶Eu prepared in air and the luminescence of BaMgSiO4∶Eu2+ phosphor,” J. Mater. Chem., 13, 1202 (2003).
[83] Z.-W. Zhang, L.-J. Wang, S.-S. Yang, W.-G. Chen and X.-J. Chu, “Synthesis and characterizations of novel Ba2La8(SiO4)6O2: Eu3+ oxyapatite phosphors,” Dyes Pigment., 142, 172 (2017).
[84] Y. Lin, R. Liu and B.-M. Cheng, “Investigation of the Luminescent Properties of Tb3+ -Substituted YAG:Ce, Gd Phosphors,” J. Electrochem. Soc., 152, J41 (2005).
[85] M. Manhas, V. Kumar, V. Sharma, O. Ntwaeaborwa and H. Swart, “Effect of alkali metal ions (Li+, Na+ and K+) on the luminescence properties of CaMgB2O5: Sm3+ nanophosphor,” Nano-Structures & Nano-Objects, 3, 9 (2015).
[86] K. Li, M. Shang, D. Geng, H. Lian, Y. Zhang, J. Fan and J. Lin, “Synthesis, Luminescence, and Energy-Transfer Properties of β-Na2Ca4(PO4)2(SiO4):A (A = Eu2+, Dy3+, Ce3+/Tb3+) Phosphors,” Inorg. Chem., 53, 6743 (2014).
[87] M. Chen, Z. Xia and Q. Liu, “Improved optical photoluminescence by charge compensation and luminescence tuning in Ca6Ba(PO4)4O:Ce3+, Eu2+ phosphors,” Crystengcomm, 17, 8632 (2015).
[88] P. Li, B. Han, J. Zhang, J. Zhang, Y. Xue, X. Suo, Q. Huang, Y. Feng and H. Shi, “Luminescence properties of α-Sr2P2O7:Sm3+ phosphor without and with co-doping charge compensation agents,” J. Mater. Sci.-Mater. Electron., 26, 6329 (2015).
[89] P. Dai, S.-P. Lee, T.-S. Chan, C.-H. Huang, Y.-W. Chiang and T.-M. Chen, “Sr3Ce(PO4)3:Eu2+: a broadband yellow-emitting phosphor for near ultraviolet-pumped white light-emitting devices,” J. Mater. Chem. C, 4, 1170 (2016).
[90] M. C. Maniquiz, K. Y. Jung and S. M. Jeong, ” Luminescence Comparison and Enhancement of Ce-doped Yttrium Aluminum Garnet Phosphor via Cation Substitution and Adding Flux,” J. Electrochem. Soc., 158, H697 (2011).
[91] V. Mahalingam and J. Thirumalai, “Facile hydrothermal synthesis and pulsed laser deposition of Ca0.5Y1−x(WO4)2:xEu3+ phosphors: investigations on the luminescence, Judd–Ofelt analysis and charge compensation mechanism,” New J. Chem., 41, 493 (2017).
[92] G. B. Nair and S. Dhoble, “Orange light-emitting Ca3Mg3(PO4)4:Sm3+ phosphors,” Luminescence, 32, 125 (2017).
[93] J. F. Moulder, J. Chastain, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Division, Perkin-Elmer Corporation1992.
[94] B. V. Crist, A review of XPS data-banks, XPS Reports 1(1) (2007).
[95] H. Lee, K. S. Chang, Y. J. Tak, T. S. Jung, J. W. Park, W.-G. Kim, J. Chung, C. B. Jeong, H. J. Kim, “Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors,” Sci Rep, 6, 35044 (2016).
[96] M. Li, W. Huang, W. Qian, B. Liu, H. Lin, W. Li, L. Wana, C. Dong, “Controllable Ag nanoparticle coated ZnO nanorod arrays on an alloy substrate with enhanced field emission performance,” RSC Adv., 7(74), 46760 (2017).
[97] R. Das, S. Sharma, K. Mandal, “Aliovalent Ba2+ doping: A way to reduce oxygen vacancy in multiferroic BiFeO3,” J. Magn. Magn. Mater., 401, 129 (2016).
[98] R.-Y. Yang, K.-T. Chen, “High thermal stability phosphor: Red-emitting LiBaPO4:Sm3+,” Mater. Res. Bull., 55, 246 (2014).
[99] L.Wu, Y. Bai, L. Wu, H. Yi, Y. Kong, Y. Zhang, J. Xu, “Sm3+ and Eu3+ codoped SrBi2B2O7: a red-emitting phosphor with improved thermal stability,” RSC Adv., 7, 1146 (2017).
[100] W. Zhou, M. Gu, Y. Ou, C. Zhang, X. Zhang, L. Zhou, and H. Liang, “Concentration-Driven Selectivity of Energy Transfer Channels and Color Tunability in Ba3La(PO4)3:Tb3+, Sm3+ for Warm White LEDs,” Inorg. Chem., 56(13), 7433 (2017).
[101] H. F. O. Müller, “Spectral Variation of Energy-Efficient Room Lighting. In Mediterranean Green Buildings & Renewable Energy: Selected Papers from the World Renewable Energy Network's Med Green Forum;” Sayigh, A., Ed.; Springer International Publishing: Cham, 2017; pp 755-763.
[102] P. Pust, P. J. Schmidt, and W. Schnick, “A Revolution in Lighting,” Nat. Mater., 14(5), 454 (2015).
[103] C. C. Lin, R.-S. Liu, “Advances in Phosphors for Light-Emitting Diodes,” J. Phys. Chem. Lett., 2(11), 1268 (2011).
[104] Z. Xia, A. Meijerink, “Ce3+-Doped Garnet Phosphors: Composition Modification, Luminescence Properties and Applications,” Chem. Soc. Rev., 46(1), 275 (2017).
[105] J. Deng, W. Li, H. Zhang, Y. Liu, B. Lei, H. Zhang, L. Liu, X. Bai, H. Luo, and H. Liu, “Eu3+‐Doped Phosphor‐in‐Glass: A Route Toward Tunable Multicolor Materials for Near‐UV High‐Power Warm‐White LEDs,” Adv. Opt. Mater., 5, 1600910 (2015).
[106] H. Ji, Z. Huang, Z. Xia, Y. Xie, M. S. Molokeev, and V. V. Atuchin, “Facile Solution-Precipitation Assisted Synthesis and Luminescence Property of Greenish-Yellow Emitting Ca6Ba(PO4)4O: Eu2+ Phosphor,” Mater. Res. Bull., 75, 233-238 (2016).
[107] Guo, N.; Huang, Y.; Jia, Y.; Lv, W.; Zhao, Q.; Lü, W.; Xia, Z.; You, H. A Novel Orange-Yellow-Emitting Ba3Lu(PO4)3:Eu2+, Mn2+ Phosphor with Energy Transfer for UV-Excited White LEDs. Dalton Trans., 42(4), 941 (2013).
[108] H.Ji, Z. Huang, Z. Xia, M. S. Molokeev, V. V. Atuchin, M. Fang, and Y. Liu, “Discovery of New Solid Solution Phosphors via Cation Substitution-Dependent Phase Transition in M3(PO4)2:Eu2+ (M= Ca/Sr/Ba) Quasi-Binary Sets,” J. Phys. Chem. C, 119(4), 2038-2045 (2015).
[109] B. K. Grandhe, V. R.Bandi, K.Jang, H.-S.Lee, D.-S.Shin, S.-S.Yi, J.-H.Jeong, “Effect of Sintering Atmosphere and Lithium Ion Co-Doping on Photoluminescence Properties of NaCaPO4:Eu2+ Phosphor,” Ceram. Int., 38 (8), 6273-6279 (2012).
[110] H. Yanlin, D. Haiyan, J. Kiwan, C. Eunjin, L. Ho, M. Jayasimhadri, Y. Soung-Soo, “Luminescence Properties of Triple Phosphate Ca8MgGd(PO4)7:Eu2+ for White Light-Emitting Diodes,” J. Phys. D-Appl. Phys.,41 (9), 095110 (2008).
[111] Q. Chuanxiang, H. Yanlin, S. Liang, C. Guoqiang, Q. Xuebin, S. H. Jin, “Thermal Stability of Luminescence of NaCaPO4:Eu2+ Phosphor for White-Light-Emitting Diodes,” J. Phys. D-Appl. Phys., 42 (18), 185105 (2009).
[112] D. Haranath, S. Mishra, S. Yadav, R. K. Sharma, L. M. Kandpal, N. Vijayan, M. K. Dalai, G. Sehgal, V. Shanker, “Rare-Earth Free Yellow-Green Emitting NaZnPO4:Mn Phosphor for Lighting Applications,” Appl. Phys. Lett., 101(22), 221905 (2012).
[113] M. Zhao, Z. Zhao, L. Yu, L. Yang, J. Jiang, X. Li, G. Li, “Single Phased Sr3La(PO4)3:Eu2+/Mn2+ Phosphors: Solid State Synthesis, Tunable Luminescence and Potential Applications in White Light LEDs,” J. Mater. Sci.-Mater. Electron., 29, 1832-1836 (2018).
[114] Y. Yang, Y. Zhao, J. Chen, Z. Mao, G. Li, J. Xu, D. Wang, B. D. Fahlman, “Synthesis of CaAlSiN3: Eu2+ Nitride Phosphors from Entire Oxides Raw Materials and Their Photoluminescent Properties,” J. Mater. Sci.-Mater. Electron., 28 (1), 715-720 (2017).
[115] S. Xu, Z. Ye, and P. Wu, "Biomimetic controlling of CaCO3 and BaCO3 superstructures by zwitterionic polymer," ACS Sustain. Chem. Eng., 3(8), 1810 (2015).
[116] X. He, M. Guan, Z. Li, T. Shang, N. Lian, Q. Zhou, “Enhancement of Fluorescence from BaMoO4:Pr3+ Deep-Red-Emitting Phosphor via Codoping Li+ and Na+ Ions,” J. Am. Ceram. Soc., 94(8), 2483 (2011).
[117] C.-H. Chiang, T.-H. Liu, H.-Y.Li, H.-Y. Kuo, S.-Y. Chu, “Effects of Flux Additives on The Characteristics of Y2.95Al5O12:0.05Ce3+ Phosphor: Particle Growth Mechanism and Luminescence,” J. Appl. Phys., 114, 243517 (2013).
[118] J. Long, F. Chu, Y. Wang, C. Zhao, W. Dong, X. Yuan, C. Ma, Z. Wen, R. Ma, and M. Du, "M8MgSc(PO4)7: xDy3+ (M= Ca/Sr) Single-Phase Full-Color Phosphor with High Thermal Emission Stability," Inorg. Chem., 56(17), 10381 (2017).
[119] L. Xi, Y. Pan, M. Zhu, H. Lian, and J. Lin, "Room-temperature synthesis and optimized photoluminescence of a novel red phosphor NaKSnF6: Mn4+ for application in warm WLEDs," J. Mater. Chem. C, 5(36), 9255 (2017).
[120] P.-C. Wang, Y.-K. Su, C.-L. Lin, and G.-S. Huang, “Improving Performance and Reducing Amount of Phosphor Required in Packaging of White LEDs With TiO2-Doped Silicone,” IEEE Electron Device Lett., 35(6), 657 (2014).
[121] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” U. S. Patent 5998925 A, July 29, 1997.
[122] J. S. Lee, P. Arunkumar, S. Kim, I. J. Lee, H. Lee, and W. B. Im,”Smart design to resolve spectral overlapping of phosphor-in-glass for high-powered remote-type white light-emitting devices,” Opt. Lett., 39, 762 (2014).
[123] Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light-Emitting Diodes with Multi-Phosphor Layers,” Jpn. J. Appl. Phys., 49, 100203 (2010).
[124] Y.-H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett., 34, 1 (2009).
[125] H.-Y. Lin, S.-W. Wang, C.-C. Lin, K.-J. Chen, H.-V. Han, Z.-Y. Tu, H.-H. Tu, T.-M. Chen, M.-H. Shih, P.-T. Lee, H.-M. Philip Chen, and H.-C. Kuo, “Excellent Color Quality of White-Light-Emitting Diodes by Embedding Quantum Dots in Polymers Material,” IEEE J. Sel. Top. Quantum Electron., 22, 2000107 (2016).
[126] P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light-Sci. Appl., 5, e16024 (2016).
[127] Yuan-Chang Lin, Jiun Pyng You,Nguyen T. Tran,Yongzhi He, Frank G. Shi, “Packaging of Phosphor Based High Power White LEDs: Effects of Phosphor Concentration and Packaging Configuration,” J. Electron. Packag., 133, 011009-1 (2011).
[128] Zong-Yuan Liu, Sheng Liu, Kai Wang, and Xiao-Bing Luo, “Studies on Optical Consistency of White LEDs Affected by Phosphor Thickness and Concentration Using Optical Simulation,” IEEE Trans. Compon. Packaging Technol., 33, 680 (2010).
[129] S. Liu and X. Luo, "LED packaging for lighting applications: design, manufacturing, and testing." John Wiley & Sons, (2011).
[130] K. Wang, F. Chen, Z. Liu, X. Luo, and S. Liu, "Design of compact freeform lens for application specific light-emitting diode packaging," Opt. Express, 18, 413 (2010).
[131] P. Gimenez-Benitez, J. C. Miñano, J. Blen, R. M. Arroyo, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, "Simultaneous multiple surface optical design method in three dimensions," Opt. Eng., 43, 1489 (2004).
[132] J. C. Miñano, P. Benítez, J. Liu, J. Infante, J. Chaves, and L. Wang, "Applications of the SMS method to the design of compact optics," pp. 77170I in Optical Modelling and Design. Vol. 7717.
[133] H. Ries and J. A. Muschaweck, "Tailoring freeform lenses for illumination," pp. 43-51 in Novel Optical Systems Design and Optimization IV. Vol. 4442.
[134] Y. Ding, X. Liu, Z.-R. Zheng, and P.-F. Gu, "Freeform LED lens for uniform illumination," Opt. Express, 16, 12958 (2008).
[135] K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, "Freeform LED lens for rectangularly prescribed illumination," J. Opt. A-Pure Appl. Opt., 11, 105501 (2009).
[136] L. Wang, K. Qian, and Y. Luo, "Discontinuous free-form lens design for prescribed irradiance," Appl. Optics, 46, 3716 (2007).
[137] K. Wang, D. Wu, Z. Qin, F. Chen, X. Luo, and S. Liu, "New reversing design method for LED uniform illumination," Opt. Express, 19, A830 (2011).
[138] F. Chen, S. Liu, K. Wang, Z. Liu, and X. Luo, "Free-form lenses for high illumination quality light-emitting diode MR16 lamps," Opt. Eng., 48, 123002 (2009).
[139] F. Chen, K. Wang, Z. Qin, D. Wu, X. Luo, and S. Liu, "Design method of high-efficient LED headlamp lens," Opt. Express, 18, 20926 (2010).
[140] Z. Qin, K. Wang, F. Chen, X. Luo, and S. Liu, "Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle," Opt. Express, 18, 17460 (2010).
[141] S. Wang, K. Wang, F. Chen, and S. Liu, "Design of primary optics for LED chip array in road lighting application," Opt. Express, 19, A716 (2011).
[142] C.-C. Sun, C.-Y. Chen, C.-C. Chen, C.-Y. Chiu, Y.-N. Peng, Y.-H. Wang, T.-H. Yang, T.-Y. Chung, and C.-Y. Chung, "High uniformity in angular correlated-color-temperature distribution of white LEDs from 2800K to 6500K," Opt. Express, 20, 6622 (2012).
[143] H.-T. Lin, C.-H. Tien, C.-P. Hsu, and R.-H. Horng, "White thin-film flip-chip LEDs with uniform color temperature using laser lift-off and conformal phosphor coating technologies," Opt. Express, 22, 31646 (2014).
[144] R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B. Wu, and S. Liu, "Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating," Opt. Express, 20, 13727 (2012).
[145] S. Li, K. Wang, F. Chen, and S. Liu, "New freeform lenses for white LEDs with high color spatial uniformity," Opt. Express, 20, 24418 (2012).
[146] H. Zheng, Y. Wang, L. Li, X. Fu, Y. Zou, and X. Luo, "Dip-transfer phosphor coating on designed substrate structure for high angular color uniformity of white light emitting diodes with conventional chips," Opt. Express, 21, A933 (2013).
[147] S. Yu, Z. Li, G. Liang, Y. Tang, B. Yu, and K. Chen, "Angular color uniformity enhancement of white light-emitting diodes by remote micro-patterned phosphor film," Photonics Res., 4, 140 (2016).
[148] Z.-Y. Liu, C. Li, B.-H. Yu, Y.-H. Wang, and H.-B. Niu, "Effects of YAG: Ce phosphor particle size on luminous flux and angular color uniformity of phosphor-converted white LEDs," J. Disp. Technol., 8, 329 (2012).
校內:2023-06-15公開