簡易檢索 / 詳目顯示

研究生: 李丹
Dey, Litan
論文名稱: 泥沙漿體流變參數 間接量測 方法之研究
Study on indirect methods to evaluate the rheological parameters of fine and coarse sediment suspensions.
指導教授: 詹錢登
Jan, Chyan-Deng
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 266
中文關鍵詞: 泥石漿體坍流試驗坍落度坍流度屈服應力黏滯係數
外文關鍵詞: Sediment suspensions, slump-flow test, slump, spread, yield stress, viscosity
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Gravity-driven debris flows of rock, gravel, and other debris usually involve solid particles that are mixed with water. These include subaerial or subaqueous rock avalanches (i.e. landslides), snow avalanches, debris flows, and volcanic events such as pyroclastic flows and debris avalanches. To model and forecast these flows and thus enhance countermeasures, it is important to understand their rheological properties. A precision rheometer is commonly used in the laboratory to measure the rheological properties of general fluids. These rheometers may also be used to investigate the rheological properties of fluids containing coarser sediments. Traditional rheometers, on the other hand, have strict restrictions on the size of the coarser sediments because of sedimentation problems and the boundary effect of the measuring device. When a test sample (i.e. a sample of debris flow material) contains coarser sediments that exceed the sediment-size limits of the rheometer, it becomes challenging to obtain rheological properties, and the rheological measurements must be performed using an alternative method. The purpose of this study is to evaluate the rheological properties of highly concentrated fine-sediment suspensions (mixtures of clay and silt in water) and coarse-sediment suspensions (mixtures of coarse sediment in a specified fine-sediment suspension) using slump-flow and channel-flow tests.
    First, the slump-flow test is presented from a rheological perspective, and two important slump-flow parameters are measured: slump height ( or slump) and spread distance (or spread). The slump and spread can be employed as qualitative indicators for evaluating the rheological parameters (yield stress and viscosity) of sediment suspensions. A generalized theoretical relationship for the yield stress is obtained as a function of the slump-flow parameters. These models incorporate shape factors that make them suitable for slump-flow tests regardless of the initial cone/mould size and geometry. Comparisons between the theoretical and experimental results of fine-and coarse-sediment suspensions indicated that the theoretical results are well fitted with the experimental slump-flow test results having a high slump and spread. In addition, a methodology for assessing the viscosity of sediment suspensions based on the theoretical and experimental results as well as their empirical correlations is provided.
    Second, the effect of sediment fractions (fine-and coarse-sediment fractions) on the slump-flow parameters and rheological parameters (obtained with a traditional rheometer) of fine-and coarse-sediment suspensions is investigated. Experimental results of the slump-flow test indicate that the dimensionless slump and spread decrease with an increase in the sediment fraction. Empirical relations for these two slump-flow parameters are proposed, linking both the fine and coarse-sediment fractions. Based on those empirical relations, the sensitivity of slump-flow parameters is evaluated, which demonstrates that the finer sediment has a much larger effect on the slump-flow parameters than the coarser sediment. It is also observed that the spread is more sensitive to changes in sediment fraction than the slump. According to the sensitivity analysis of rheological parameters, finer sediment has a greater effect on rheological parameters than coarser sediment. The effect of increasing the sediment fractions on the rate of change in viscosity is substantially larger than that on the yield stress.
    Third, laboratory experiments on the spread of sediment suspensions in a flat horizontal rectangular channel, termed the channel-flow test, are performed to mimic the complex gravity-driven natural flows (such as debris flow and mudflow). The final shape of the deposited material is recorded and the channel-flow parameters are measured: final thickness, final spread length, angle of reach, and time to final spread. The results of the channel-flow test show that the channel-flow parameters are correlated to the sediment fractions, and their empirical relationships are presented. The effect of sediment fractions on the channel-flow parameters is investigated and formulated empirically. Compared with a highly-concentrated sediment suspension, a suspension with low sediment fractions requires a much longer time to reach the final equilibrium shape.
    Finally, the dimensionless slump-flow parameters and channel-flow parameters are correlated with the dimensionless rheological parameters measured using a traditional rheometer. The empirical relationships between the (i) rheological parameters and slump-flow parameters and (ii) rheological parameters and channel-flow parameters are discussed, which exhibit a strong correlation. Given the good correlation obtained and the fact that the theoretical solutions agree well with the experimental results, the author believes that the slump-flow and channel-flow tests can provide an inexpensive, simple, and relatively reliable method to determine the rheological properties of complex sediment suspensions (i.e., debris flow).

    Table of Contents Abstract i Acknowledgments iv Table of contents vii Lists of figures xiv Lists of tables xxiii 1. Introduction and background of the study 1 1.1 Problem statement 1 1.2 Background of the study 2 1.2.1 Debris flow 2 1.2.2 Types of debris flows 3 1.2.2.1 Granular debris flows 3 1.2.2.2 Viscous debris flows 5 1.2.2.3 Mudflows 6 1.2.3 Theoretical concepts of debris flows 7 1.2.4 Theoretical concept of granular debris flows 10 1.2.4.1 Takahashi (1991) 10 1.2.4.2 Iverson and Denlinger (2001) 11 1.2.5 Theoretical concept of mudflows and muddy hyper-concentrated flows 13 1.2.6 Theoretical concept of viscous debris flows 14 1.3 Motivation for the rheological study of debris flow 16 1.4 Traditional rheometers 17 1.5 Rheometry for fine- and coarse-sediment suspensions 19 1.5.1 Rheometry of sediment-water mixtures 20 1.5.2 Rotational rheometers 22 1.5.3 Parallel Plate Geometry 22 1.5.4 Cone and Plate Geometry 23 1.5.5 Concentric Cylinder System (CCS) 24 1.5.6 Magnetic resonance imaging (MRI): 26 1.5.7 Viscometers 26 .5.8 The ball measuring system (BMS) 27 1.6 Introduction and definition of rheological terms 29 1.6.1 Definition of yield stress and viscosity 29 1.6.1.1 Yield-stress fluids 31 1.6.1.2 Revealing the myths about Yield-Stress 32 1.6.2 Properties of non-Newtonian fluids 34 1.6.2.1 Time-independent flow behaviors 35 1.6.2.2 Pseudo-plasticity or shear-thinning fluids 36 1.6.2.3 Dilatant fluids 36 1.6.3 Time-dependent flow behaviors 37 1.6.3.1 Thixotropic fluids 37 1.6.3.2 Rheopexy or negative thixotropy fluids 38 1.7 Research objectives 39 1.8 Layout 40 2. Literature review……………………………………………………………………………….43 2.1 Fine-sediment suspension 43 2.1.1 Empirical equations relating the yield stress with the fine-sediment fraction 45 2.1.2 Empirical equations to relate the viscosity with the fine-sediment fraction 48 2.2 Coarse-sediment suspensions 50 2.2.1 Yield stress model for coarse-sediment suspension 53 2.2.2 Viscosity models for coarse-sediment suspensions 56 2.3 Defining a flow curve 58 2.3.1 Ideally viscous fluids and their flow curves 59 2.3.2 Shear-thinning fluids and their flow curves 60 2.3.3 Shear-thickening fluids and their flow curves 60 2.4 Evaluate the yield point and viscosity from the flow curve 61 2.4.1 The Power Law (Ostwald) Model 62 2.4.2 The Herschel-Bulkley Model 63 2.4.3 The Bingham Model 65 2.4.4 The Casson Model 67 2.4.5 The Cross model 68 2.5 Use of the slump-flow test to determine rheology 70 2.5.1 General introduction 70 2.5.2 Emperirical relations 72 2.6 Background of the channel-flow test 78 3. Theoretical analysis 81 3.1 Literature studies on theoretical relations between yield stress and slump-flow parameters 81 3.1.1 Relations for cylindrically shaped mould (Pashias et al., 1996) 81 3.1.2 Clayton et al. (2003) 84 3.2 Solutions for conical-shaped mould (Roussel and Coussot, 2005) 86 3.2.1 Yield stress and slump relation 86 3.2.2 Yield stress and spread relation 88 3.3 Development of generalized relationships between the yield stress and slump-flow parameters 90 3.3.1 Shape factor and aspect ratio of the initial sample 91 3.3.2 Single-layer model 93 3.3.3 Double-layer model 98 3.3.3.1 Top non-deformable layer 98 3.3.3.2 Total yield stress 104 3.3.3.3 Bottom (deformable) layer 105 3.3.4 The relations between the slump and yield stress 105 3.3.5 The relations between the spread and yield stress 106 3.3.6 Comparison of theoretical analysis for conical and cylindrical mould 110 3.4 Theoretical analysis of the flow of sediment suspensions in the channel-flow test 113 4. Experimental setup 116 4.1 Experimental materials 116 4.2 Properties of the experimental materials 116 4.2.1 Fine sediment 116 4.2.2 Coarse sediment 117 4.3 Sample preparation 121 4.3.1 Fine-sediment suspensions 121 4.3.2 Coarse-sediment suspensions 122 4.4 Determination of rheological properties of material suspensions 125 4.4.1 Experimental procedure for measuring rheological parameters using a Brookefield DV-III 126 4.4.1.1 Mitschka Method 128 4.4.1.2 Briggs and Steffe 131 4.4.1.3 Obtaining flow curves between shear rate and shear stress 132 4.4.2 Analysis of thixotropy properties 137 4.4.2.1 Flow ramp up and down method 137 4.5 Slump-flow parameter measurement from slump-flow test 141 4.5.1 Slump-flow test procedure 142 4.5.2 Slump-flow parameters 144 4.6 Experimental measurements of LCPC Box…………............................................. 146 4.6.1 LCPC Box setup and experimental procedure 147 4.7 Channel-flow test measurements 149 4.7.1 Channel-flow test setup and procedure 149 5. Results and analysis……………………………………………………………..151 5.1 Effect of spindle size on the Bingham rheological parameters estimation 151 5.1.1 importance of spindle suitable spindle selection 152 5.1.2 Analysing spindle size effect for fine-sediment suspensions 155 5.1.3 Analysing spindle size effect for coarse-sediment suspensions 157 5.1.4 Remarks 159 5.2 Effect of sediment fractions on rheological parameters 160 5.2.1 Results of fine-sediment suspensions 160 5.2.2 Results of coarse-sediment suspension (glass beads) 163 5.2.3 Fine-sediment suspensions: effect of fine-sediment fraction 169 5.2.4 Coarse-sediment suspensions: effect of coarse-sediment fraction 170 5.2.5 Bingham rheological parameters of coarse-sediment (glass beads and sands) suspensions 173 5.3 Evaluating the effects of sediment fractions on slump and spread 175 5.3.1 Slump-flow test results of fine-sediment suspensions 175 5.3.1.1 Repeatability of slump-flow parameter measurements 175 5.3.1.2 Critical sediment fraction 176 5.3.1.4 Sensitivity of slump-flow parameters to C_vf 179 5.3.1.5 Relative sensitivity of slump-flow parameters to C_vf 180 5.3.1.6 Relationship between the slump and spread of FSS 181 5.3.2 Results of slump-flow test for coarse-sediment suspensions 182 5.3.2.1 Empirical relations for slump-flow parameters of coarse-sediment suspensions 186 5.3.2.2 Sensitivity of slump to C_vf and C_vg for CSS 189 5.3.2.3 Sensitivity of spread to C_vf and C_vg for CSS 190 5.3.2.4 Relative sensitivity of slump-flow parameters to C_vg for CSS 192 5.3.2.5 Remarks 193 5.4 Comparison between the theoretical and experimental results of yield stress and slump-flow parameter relations 194 5.4.1 Rheological parameters of sediment suspensions 194 5.4.2 Comparison between the yield stress and slump-flow parameters 196 5.4.2.1 Comparison between the slump and spread 197 5.4.2.2 Comparison between the viscosity and slump-flow parameters 198 5.4.3 Empirical correlation between the slump-flow and rheological parameters 200 5.4.4 Remarks 205 5.5 Results of LCPC Box test 207 5.5.1 Effect of fine-sediment fractions on final spread length and thickness of sediment deposits 208 5.5.2 Effect of time on spread length 210 5.5.4 Relationship between the flow parameters and final spread time 212 5.5.5 Correlation between rheological parameters and channel-flow parameters 213 5.5.6 Remarks 216 5.6 Results of channel-flow tests 217 5.6.1 Flow profiles 217 5.6.2 Channel-flow parameters 218 5.6.3 Evolution of spread length 219 5.6.4 The velocity of the spread 221 5.6.5 Effect of sediment fractions on the channel-flow parameters 223 5.6.6 Comparison between rheological and channel-flow parameters 226 5.6.7 An alternate way to determine viscosity 229 5.6.7.1 Relationship between the viscosity and final spread length 230 5.6.8 Remarks 231 6. Conclusions and Recommendations 232 6.1 Slump-flow parameters of fine- and coarse-sediment suspensions 232 6.2 Estimation of the rheological parameters of sediment-water mixtures using a horizontal rectangular channel 234 6.3 Determination of rheological parameters from the channel-flow test 235 6.4 Measurement of Bingham rheological parameters using a conventional rheometer 236 6.5 Comparisons between the Bingham rheological parameters and slump-flow parameters 237 6.6 Correlations between the Bingham rheological parameters and channel-flow parameters 238 6.7 Recommendations for future research 238 7. References…………………………………………………………………..……242

    "Fann Instruments (2013). Model 35 Viscometer Instruction manual, manual number 208878."
    "JSCE—F503 (1990). Method of test for the slump flow of concrete. Tokyo: Standards of Japan Society of Civil Engineers."
    "Viscometer, Manual Labolatory Brookfield (2006). More Solutions to Sticky Problems: A Guide to Getting More from Yout Brookfield Viscometer". Brookfield Engineering Labs." Inc. Middleboro, USA.
    Ancey, C., Coussot, P., and Evesque, P. (1996). "Examination of the possibility of a fluid‐mechanics treatment of dense granular flows." Mechanics of Cohesive‐frictional Materials: An International Journal on Experiments, Modelling and Computation of Materials and Structures, 1(4), 385-403.
    Ancey, C., and Jorrot, H. (2001). "Yield stress for particle suspensions within a clay dispersion." Journal of Rheology, 45(2), 297-319.
    Arattano, M., Franzi, L., and Marchi, L. (2006). "Influence of rheology on debris-flow simulation." Natural Hazards and Earth System Sciences, 6(4), 519-528.
    Armanini, A., Dalrì, C., Fraccarollo, L., Larcher, M., and Zorzin, E. (2003). "Experimental analysis of the general features of uniform mud-flow." Proc., 3rd Int. Conf. Debris-Flow Hazard Mitigation, 423-434.
    Astarita, G., Marrucci, G., and Palumbo, G. (1964). "Non-Newtonian gravity flow along inclined plane surfaces." Industrial & Engineering Chemistry Fundamentals, 3(4), 333-339.
    ASTM (2003). "Annual Book of ASTM Standards. Designation: C 143/C 143M-97 Standard Test Method for Slump of Hydraulic-Cement Concrete." ASTM International, vol. 04.02, Concrete and Aggregates, ASTM, pp. 89–91.
    ASTM (2012). "Standard test method for slump of hydraulic-cement concrete." ASTM International West Conshohocken, PA.
    Bagnold, R. A. (1954). "Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 225(1160), 49-63.
    Bagnold, R. A. (1956). "The flow of cohesionless grains in fluids." Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 249(964), 235-297.
    Balmforth, N., Craster, R., Perona, P., Rust, A., and Sassi, R. (2007). "Viscoplastic dam breaks and the Bostwick consistometer." Journal of non-Newtonian Fluid mechanics, 142(1-3), 63-78.
    Balmforth, N. J., and Kerswell, R. R. (2005). "Granular collapse in two dimensions." Journal of Fluid Mechanics, 538, 399-428.
    Barnes, H., and Walters, K. (1985). "The yield stress myth?" Rheologica Acta, 24(4), 323-326.
    Barnes, H. A. (1999). "The yield stress—a review or ‘παντα ρει’—everything flows?" Journal of Non-Newtonian Fluid Mechanics, 81(1-2), 133-178.
    Bartos, P., Sonebi, M., and Tamimi, A. (2002). "Workability and Rheology of Fresh Concrete: Compendium of Tests Report of RILEM Technical Committee 145-WSM Workability of Special Concrete Mixes." RILEM Report.
    Bauman, A., Landel, R., and Moser, B. (1965). "Rheology of concentrated suspensions-Effect of a surfactant."
    Benaicha, M., Roguiez, X., Jalbaud, O., Burtschell, Y., and Alaoui, A. H. (2016). "New approach to determine the plastic viscosity of self-compacting concrete." Frontiers of Structural and Civil Engineering, 10(2), 198-208.
    Bergomi, T. (2001). "Numerische Untersuchung von Murgängen: das Programm FLO-2D." ETH, VAW Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie.
    Bingham, E. (1916). "The behavior of plastic materials." Bulletin of US Bureau of Standards, 13, 309-353.
    Bird, R. B., Dai, G., and Yarusso, B. J. (1983). "The rheology and flow of viscoplastic materials." Reviews in Chemical Engineering, 1(1), 1-70.
    Boger, D. V. (1998). "Environmental rheology and the mining industry." Proceedings of 7th International Symposium on Mining with Backfill: Minefill, 98, 15-17.
    Boniello, M., Calligaris, C., Lapasin, R., and Zini, L. (2010). "Rheological investigation and simulation of a debris-flow event in the Fella watershed." Natural Hazards and Earth System Sciences, 10(5), 989-997.
    Bonn, D., and Denn, M. M. (2009). "Yield stress fluids slowly yield to analysis." Science, 324(5933), 1401-1402.
    Bouvet, A., Ghorbel, E., and Bennacer, R. (2010). "The mini-conical slump flow test: Analysis and numerical study." Cement and Concrete Research, 40(10), 1517-1523.
    Bozhinskiy, A., and Nazarov, A. "Two-phase model of debris-flow." Proc., Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, 263-269.
    Bradley, J. B. (1986). "Hydraulics and bed material transport at high fine suspended sediment concentrations." Available from University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106, Order(8618167).
    Brezzi, L., Gabrieli, F., Cola, S., and Onofrio, I. "Influence of mixture composition in the collapse of soil columns." Proc., Workshop on World Landslide Forum, Springer, 449-455.
    Brian Dade, W., and Huppert, H. E. (1998). "Long-runout rockfalls." Geology, 26(9), 803-806.
    Briggs, J. L., and Steffe, J. F. (1997). "Using Brookfield data and the Mitschka method to evaluate power law foods." Journal of Texture Studies, 28(5), 517-522.
    Brookfield (1995). "Viscometer Handbook." DV3 Operating instructions, Brookfield Engineering Laboratories Inc Middlebore, MA.
    Bui, V. K., Akkaya, Y., and Shah, S. P. (2002). "Rheological model for self-consolidating concrete." ACI Materials Journal, 99(6), 549-559.
    Cabrera, M., and Estrada, N. (2019). "Granular column collapse: Analysis of grain-size effects." Physical Review E, 99(1), 012905.
    Caldwell, D. H., and Babbitt, H. E. (1941). "Flow of muds, sludges, and suspensions in circular pipe." Industrial & Engineering Chemistry, 33(2), 249-256.
    Campbell, R. H. (1975). "Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California", US Government Printing Office.
    Casson, N. (1959). "Rheology of disperse systems." Flow Equation for Pigment Oil Suspensions of the Printing Ink Type. Rheology of Disperse Systems, 84-102.
    Castro, A. L., and Liborio, J. B. L. (2006). "Initial rheological description of high performance concretes." Materials Research, 9(4), 405-410.
    Caton, F., and Baravian, C. (2008). "Plastic behavior of some yield stress fluids: from creep to long-time yield." Rheologica Acta, 47(5-6), 601-607.
    Chandler, J. L. (1986). "The stacking and solar drying process for disposal of bauxite tailings in Jamaica." Proceedings of the International Conference on Bauxite Tailings, Kingston, Jamaica, 101-105.
    Chapman, C. (1913). "Method and apparatus for determining consistency." Phil. Mag, 1045-1052.
    Chen, C. (1986a). "Bingham plastic or Bagnold's dilatant fluid as a rheological model of debris flow?" Proc. 3rd Int. Symp. on River Sedimentation, University of Mississippi, 1624-1636.
    Chen, C. (1986b). "Viscoplastic fluid model for debris flow routing." Water Forum'86: World Water Issues in Evolution, Proceedings of the Conference., 10-18.
    Chhabra, R. P. (2010). "Non-Newtonian fluids: an introduction." Rheology of Complex Fluids, Springer, 3-34.
    Chhabra, R., Richardson, J. F., and Flow, N. N. (2008). "Applied Rheology: Engineering Applications." Butterworth-Heinemann, Oxford.
    Chhabra, R., and Uhlherr, P. (1988). "Static equilibrium and motion of spheres in viscoplastic liquids." Encyclopedia of Fluid Mechanics, 7, 611-633.
    Chhabra, R. P., and Richardson, J. F. (1999). "Non-Newtonian flow in the process industries: fundamentals and engineering applications", Butterworth-Heinemann.
    Chidiac, S., and Habibbeigi, F. (2005). "Modelling the rheological behaviour of fresh concrete: An elasto-viscoplastic finite element approach." Computers and Concrete, 2(2), 97-110.
    Chidiac, S., Habibbeigi, F., and Chan, D. (2006). "Slump and slump flow for characterizing yield stress of fresh concrete." ACI materials journal, 103(6), 413.
    Christensen, G. (1991). "Modelling the flow of fresh concrete: the slump test.", PhD thesis, Princeton University.
    Christensen, R. (1996). Analysis of variance, design, and regression: applied statistical methods, CRC Press.
    Clayton, S., Grice, T., and Boger, D. (2003). "Analysis of the slump test for on-site yield stress measurement of mineral suspensions." International Journal of Mineral Processing, 70(1-4), 3-21.
    Cooke, R., and Paterson, A. (2013). "The Design of Slurry Pipeline Systems." Pinelands, South Africa.
    Corominas, J. (1996). "The angle of reach as a mobility index for small and large landslides." Canadian Geotechnical Journal, 33(2), 260-271.
    Costa, J. E., and Jarrett, R. D. (1981). "Debris flows in small mountain stream channels of Colorado and their hydrologic implications." Bulletin of the Association of Engineering Geologists, 18(3), 309-322.
    Costa, J. E. (1984). "Physical geomorphology of debris flows." Developments and Applications of Geomorphology, Springer, 268-317.
    Coussot, P. (1994). "Steady, laminar, flow of concentrated mud suspensions in open channel." Journal of Hydraulic Research, 32(4), 535-559.
    Coussot, P. (1997). "Mudflow rheology and dynamics, IAHR Monograph Series." Rotterdam: AA Balkema.
    Coussot, P., and Boyer, S. (1995). "Determination of yield stress fluid behaviour from inclined plane test." Rheologica Acta, 34(6), 534-543.
    Coussot, P., Laigle, D., Arattano, M., Deganutti, A., and Marchi, L. (1998). "Direct determination of rheological characteristics of debris flow." Journal of Hydraulic Engineering, 124(8), 865-868.
    Coussot, P., Nguyen, Q. D., Huynh, H., and Bonn, D. (2002a). "Viscosity bifurcation in thixotropic, yielding fluids." Journal of Rheology, 46(3), 573-589.
    Coussot, P., and Piau, J. M. (1994). "On the behavior of fine mud suspensions." Rheologica Acta, 33(3), 175-184.
    Coussot, P., and Piau, J. M. (1995). "The effects of an addition of force-free particles on the rheological properties of fine suspensions." Canadian Geotechnical Journal, 32(2), 263-270.
    Coussot, P., Raynaud, J., and Ancey, C. (2003). "Combined MRI-rheometry determination of the behavior of mud suspensions." Debris Flow Mechanics and Mitigation Conference, Mills Press, Davos, 291-301.
    Coussot, P., Raynaud, J., Bertrand, F., Moucheront, P., Guilbaud, J., Huynh, H., Jarny, S., and Lesueur, D. (2002b). "Coexistence of liquid and solid phases in flowing soft-glassy materials." Physical Review Letters, 88(21), 218301.
    Coussot, P., Tabuteau, H., Chateau, X., Tocquer, L., and Ovarlez, G. (2006). "Aging and solid or liquid behavior in pastes." Journal of Rheology, 50(6), 975-994.
    Cross, M. (1979). "Relation between viscoelasticity and shear-thinning behaviour in liquids." Rheologica Acta, 18(5), 609-614.
    Dai, J., Chen, W., and Zhou, B. (1980). "An experimental study of slurry transport in pipes." Proc. Int. Symposium on River Sedimentation, 195-204.
    Daido, A. (1976). "Viscosity and yield value of fluid containing clay." Proceedings of the 26th Japan National Congress for Applied Mechanics.
    Davies, T. (1986). "Large debris flows: a macro-viscous phenomenon." Acta Mechanica, 63(1), 161-178.
    Davies, T. H. (1988). "Debris flow surges: a laboratory investigation." Mitteilungen der Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie an der Eidgenossischen Technischen Hochschule Zurich, 96.
    de Bruyn, J. (2011). "Unifying liquid and granular flow." Physics, 4, 86.
    De Larrard, F. (1999). "Concrete mixture proportioning: a scientific approach", CRC Press.
    Denny, M. W. (1981). "A quantitative model for the adhesive locomotion of the terrestrial slug, Ariolimax columbianus." Journal of experimental Biology, 91(1), 195-217.
    Dey, L., Jan, C. D., and Wang, J. S. (2021). "Effects of particle fractions on the Bingham yield stress and viscosity of fine-coarse particle suspensions." J. Mt. Sci. , 18(10).
    Dey, L., Jan, C.D., and Wang, J.S., ( 2022). "Study on the relations among the yield stress, slump and slump-flow for sediment slurries. ." J. Chin. Soil Water Conserv. (in Chinese).
    Divoux, T., Barentin, C., and Manneville, S. (2011). "From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids." Soft Matter, 7(18), 8409-8418.
    Domone, P. (1998). "The slump flow test for high-workability concrete." Cement and Concrete Research, 28(2), 177-182.
    Dzuy, N. Q., and Boger, D. V. (1983). "Yield stress measurement for concentrated suspensions." Journal of Rheology, 27(4), 321-349.
    Dzuy, N. Q., and Boger, D. V. (1985). "Direct yield stress measurement with the vane method." Journal of Rheology, 29(3), 335-347.
    Engelund, F., and Wan, Z. (1984). "Instablity of hyperconcentrated ow." J. Hydraulic Res, 110, 219233.
    Fei, X. (1983). "Grain composition and flow properties of heavily concentrated suspensions." Proceeding of the Second International Symposium on River Sedimentation, Water Resources and Electrical Power Press, China, 307-309.
    Ferraris, C. F., Brower, L. E., Banfill, P., Beaupré, D., Chapdelaine, F., de Larrard, F., Domone, P., Nachbaur, L., Sedran, T., and Wallevik, O. (2001). "Comparison of concrete rheometers: international test at LCPC (Nantes, France)" in October, 2000, US Department of Commerce, National Institute of Standards and Technology.
    Ferraris, C. F., and de Larrard, F. (1998). "Modified slump test to measure rheological parameters of fresh concrete." Cement, Concrete and Aggregates, 20(2), 241-247.
    Fink, J. H., Malin, M. C., D'Alli, R. E., and Greeley, R. (1981). "Rheological properties of mudflows associated with the spring 1980 eruptions of Mount St. Helens volcano, Washington." Geophysical Research Letters, 8(1), 43-46.
    Gao, J., and Fourie, A. (2015). "Spread is better: An investigation of the mini-slump test." Minerals Engineering, 71, 120-132.
    Gao, M., and Forssberg, E. (1993). "Influence of slurry rheology on ultra-fine grinding in a stirred ball mill." International Mineral Processing Congress: 23/05/1993-28/05/1993, 237-244.
    Garcia, F., Le Bolay, N., and Frances, C. (2003). "Rheological behaviour and related granulometric properties of dense aggregated suspensions during an ultrafine comminution process." Powder Technology, 130(1-3), 407-414.
    Gawu, S. K., and Fourie, A. (2004). "Assessment of the modified slump test as a measure of the yield stress of high-density thickened tailings." Canadian Geotechnical Journal, 41(1), 39-47.
    Gram, A., Silfwerbrand, J., and Lagerblad, B. (2014). "Obtaining rheological parameters from flow test—Analytical, computational and lab test approach." Cement and Concrete Research, 63, 29-34.
    Griskey, R. G., Nechrebecki, D., Notheis, P., and Balmer, R. (1985). "Rheological and pipeline flow behavior of corn starch dispersions." Journal of Rheology, 29(3), 349-360.
    Hackley, V. A., and Ferraris, C. F. (2001). "Guide to rheological nomenclature: Measurements in Ceramic Particulate Systems", Citeseer.
    Hampton, M. (1975). "Competence of fine-grained debris flows." Journal of Sedimentary Research, 45(4), 834-844.
    Hibbeler, R. (1997). "Mechanics of Materials." Prentice Hall.
    Hillier, S. (1995). "Erosion, sedimentation and sedimentary origin of clays." Origin and Mineralogy of Clays, Springer, 162-219.
    Hong, V. (2019). "Comparison of slump behaviors of sediment slurries under slump tests in air and water conditions." Masters' thesis, National Cheng Kung University, Taiwan. .
    Howard, A. B. (1997). "Thixotropy-a review." J. Non-Newtonian Fluid Mech, 70, 1-33.
    Howard, C. (1965). "Discussion of" Hyperconcentrations of suspended sediment,"." J. Hydraul. Div. Am. Soc. Civ. Eng, 91, 386-388.
    Hu, C. (1995). "Rheology of fluid concrete." Ph. D. thesis, ENPC, Marne la Vallée, France, (in French).
    Huang, Z., and Aode, H. (2009). "A laboratory study of rheological properties of mudflows in Hangzhou Bay, China." International Journal of Sediment Research, 24(4), 410-424.
    Hungr, O., Leroueil, S., and Picarelli, L. (2014). "The Varnes classification of landslide types, an update." Landslides, 11(2), 167-194.
    Hunt, M., Zenit, R., Campbell, C., and Brennen, C. (2002). "Revisiting the 1954 suspension experiments of RA Bagnold." Journal of Fluid Mechanics, 452, 1-24.
    Iler, K. R. (1979). "The chemistry of silica." Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica.
    Innes, J. L. (1983). "Progress in Physical Geography." Debris flows, 7(4), 469-501.
    Ionescu, I. R., Mangeney, A., Bouchut, F., and Roche, O. (2015). "Viscoplastic modeling of granular column collapse with pressure-dependent rheology." Journal of Non-Newtonian Fluid Mechanics, 219, 1-18.
    Iverson, R. M. (1997). "The physics of debris flows." Reviews of Geophysics, 35(3), 245-296.
    Iverson, R. M., and Denlinger, R. P. (2001). "Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory." Journal of Geophysical Research: Solid Earth, 106(B1), 537-552.
    Iverson, R. M., and LaHusen, R. G. (1993). "Friction in debris flows: Inferences from large-scale flume experiments." Hydraulic Engineering, 93(2), 1604-1609.
    Iverson, R. M., Schilling, S. P., and Vallance, J. W. (1998). "Objective delineation of lahar-inundation hazard zones." Geological Society of America Bulletin, 110(8), 972-984.
    Jakob, M., Hungr, O., and Jakob, D. M. (2005). "Debris-flow Hazards and Related Phenomena", Springer.
    Jacobs, W., Van Kesteren, W., and Winterwerp, J. C. (2008). "Strength of sediment mixtures as a function of sand content and clay mineralogy." Proceedings in Marine Science, Elsevier, 91-107.
    James, A., Williams, D., and Williams, P. (1987). "Direct measurement of static yield properties of cohesive suspensions." Rheologica Acta, 26(5), 437-446.
    Jan, C. D., Dey, L (2022). "Effects of sediment fractions on slump-flow parameters of fine- and coarse-sediment suspensions." Journal of Non-Newtonian Fluid Mechanics, Elsevier.
    Jan, C. D., Chang, Y. W., Kuo, F. H., and Lo, W. C. (2009). "Effects of solid particles on the rheological parameters of Bingham fluid." Journal of Chinese Soil and Water Conservation, 40(1), 95-104.
    Jan, C. D., and Chen, C. L. (2005). "Debris flows caused by Typhoon Herb in Taiwan." Debris-flow Hazards and Related Phenomena, Springer, 539-563.
    Jan, C. D., Hsu, C. K., and Yang, C. Y. (2018). "Rheological Experiments and Slump Tests of Kaolin Slurries." Journal of Chinese Soil and Water Conservation, 49(2), 110-116.
    Jan, C. D., and Shen, H. W. (1997). "Review dynamic modeling of debris flows." Recent Developments on Debris Flows, Springer, 93-116.
    Jan, C. D., Yang, C. Y., Hsu, C. K., and Dey, L. (2019). "Correlation between the slump parameters and rheological parameters of debris flow." 7th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Monitoring, Modeling, and Assessment, 323-329.
    Jian, L., Jianmo, Y., Cheng, B., and Defu, L. (1983). "The main features of the mudflow in Jiang-Jia Ravine." Zeitschrift für Geomorphologie, 325-341.
    Johnson, A. (1970). "Physical Processes in Geology Freeman & Cooper." San Francisco, California, United States of America.
    JSCE-F503. (1990). "Method of test for slump flow of concrete." Standards of Japan Society of Civil Engineers.
    Kaitna, R., and Rickenmann, D. (2007). "A new experimental facility for laboratory debris flow investigation." Journal of Hydraulic Research, 45(6), 797-810.
    Kokado, T., Hosoda, T., and Miyagawa, T. (2000). "Study on a method of obtaining rheological coefficients of high-flow concrete with numerical analysis." Doboku Gakkai Ronbunshu, 2000(648), 109-125.
    Komatina, D., and Jovanovic, M. (1997). "Experimental study of steady and unsteady free surface flows with water-clay mixtures." Journal of Hydraulic Research, 35(5), 579-590.
    Kranenburg, C. (1994). "The fractal structure of cohesive sediment aggregates." Estuarine, Coastal and Shelf Science, 39(5), 451-460.
    Kurokawa, Y., Tanigawa, Y., Mori, H., and Komura, R. (1993). "Study on slumping test of fresh concrete." Trans. JCI, 15, 55-62.
    Laboratories, B. E. (1995). "More Solutions to Sticky Problems: A Guide to Getting More From Your Brookfield Viscometer".
    Lajeunesse, E., Mangeney-Castelnau, A., and Vilotte, J. (2004). "Spreading of a granular mass on a horizontal plane." Physics of Fluids, 16(7), 2371-2381.
    Laskar, A. I. (2009). "Correlating slump, slump flow, vebe and flow tests to rheological parameters of high-performance concrete." Mater Res-Ibero-Am J, 12(1), 75-81.
    Lazarus, J., and Slatter, P. (1986). "Comparative rheological characterisation using a balanced beam tube viscometer and rotary viscometer." Hydrotransport, 291-232.
    Liddel, P. V., and Boger, D. V. (1996). "Yield stress measurements with the vane." Journal of non-Newtonian Fluid Mechanics, 63(2-3), 235-261.
    Lin, P. S., Lin, J. Y., Hung, J. C., and Yang, M. D. (2002). "Assessing debris-flow hazard in a watershed in Taiwan." Engineering Geology, 66(3-4), 295-313.
    Litzenberger, C., and Sumner, R. (2004). "Flow behaviour of kaolin clay slurries." Proc. 16th Int. Conf. Hydraulic Transport of Solids: Hydrotransport, 16, 77-91.
    Liu, K. F., and Mei, C. C. (1989). "Slow spreading of a sheet of Bingham fluid on an inclined plane." Journal of Fluid Mechanics, 207, 505-529.
    Locat, J., and Demers, D. (1988). "Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays." Canadian Geotechnical Journal, 25(4), 799-806.
    Lube, G., Huppert, H. E., Sparks, R. S. J., and Hallworth, M. A. (2004). "Axisymmetric collapses of granular columns." Journal of Fluid Mechanics, 508, 175-199.
    Møller, P., Fall, A., and Bonn, D. (2009). "Origin of apparent viscosity in yield stress fluids below yielding." EPL (Europhysics Letters), 87(3), 38004.
    Müller, M., Tyrach, J., and Brunn, P. (1999). "Rheologische Charakterisierung von Maschinenputzen." ZKG International, 52(5), 252-258.
    Major, J. J., and Pierson, T. C. (1992). "Debris Flow Rheology - Experimental-Analysis of Fine-Grained Slurries." Water Resources Research, 28(3), 841-857.
    Malet, J. P., Laigle, D., Remaître, A., and Maquaire, O. (2005). "Triggering conditions and mobility of debris flows associated to complex earthflows." Geomorphology, 66(1-4), 215-235.
    Malkin, A., Malkin, A., and Isayev, A. (2006). "Rheology: concepts, methods & applications: Chem Tec Pub."
    Mansfield, C. F. (1985). "Modeling Newtonian fluids and Bingham plastics." Journal of Geological Education, 33(2), 97-100.
    Marchi, L., and Tecca, P. R. (2013). "Debris-flow monitoring in Italy." Dating Torrential Processes on Fans and Cones, Springer, 309-318.
    Marina, K. A. N., Pourgouri, S., Kanellopoulos, A. D., Petrou, M. F., Ioannou, I., Georgiou, G., and Alexandrou, A. (2010). "Determination of the Rheological Parameters of Self-Compacting Concrete Matrix Using Slump Flow Test."
    Masliyah, J. (2010). "Fundamentals of oilsands extraction." Edmonton: University of Alberta.
    Metzner, A., and Whitlock, M. (1958). "Flow behavior of concentrated (dilatant) suspensions." Transactions of the Society of Rheology, 2(1), 239-254.
    Mezger, T. (2000). "Das rheologie-handbuch: für anwender von rotationsund oszillations-rheometern." Vincentz, Hannover, 160-163.
    Michaels, A. S., and Bolger, J. C. (1962). "The plastic flow behavior of flocculated kaolin suspensions." Industrial & Engineering Chemistry Fundamentals, 1(3), 153-162.
    Migniot, C. (1968). "A study of the physical properties of various very fine sediments and their behaviour under hydrodynamic action".
    Mitschka, P. (1982). "Simple conversion of Brookfield RVT readings into viscosity functions." Rheologica Acta, 21(2), 207-209.
    Mori, H. (1998). "Study on a method of obtaining yield values of fresh concrete from slump flow test." Concrete Library of JSCE, 32.
    Munson, B., Young, D., and Okiishi, T. (1998). "Fundamentals of Fluid Mechanics". 199-200.
    Murata, J. (1984). "Flow and deformation of fresh concrete." Matériaux et Constructions, 17(2), 117-129.
    Murata, J., and Kikukawa, H. (1992). "Viscosity equation for fresh concrete." ACI Materials Journal, 89(3), 230-237.
    Nguyen, Q., and Boger, D. (1987). "Characterization of yield stress fluids with concentric cylinder viscometers." Rheologica Acta, 26(6), 508-515.
    Nguyen, Q., and Boger, D. (1992). "Measuring the flow properties of yield stress fluids." Annual Review of Fluid Mechanics, 24(1), 47-88.
    Nguyen, Q. D., and Uhlherr, P. H. T. (1985). "Thixotropic Behavior of Concentrated Red Mud Suspensions." Journal of Rheology, 29(6), 815-815.
    Nguyen, Q. H., and Nguyen, N. D. (2012). "Incompressible non-Newtonian fluid flows." Continuum Mechanics-Progress in Fundamentals and Engineering Applications, IntechOpen, DOI, 10(26091), 47-72.
    Nguyen, T., Roussel, N., and Coussot, P. (2006). "Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid." Cement and Concrete Research, 36(10), 1789-1796.
    Nisbet, R., Elder, J., and Miner, G. D. (2009). Handbook of statistical analysis and data mining applications, Academic Press.
    O'Brien, J. S., and Julien, P. Y. (1988). "Laboratory analysis of mudflow properties." Journal of Hydraulic Engineering, 114(8), 877-887.
    O'Brien, J. S., Julien, P. Y., and Fullerton, W. (1993). "Two-dimensional water flood and mudflow simulation." Journal of Hydraulic Engineering, 119(2), 244-261.
    Ogburn, S. E., Calder, E. S., Cole, P. D., and Stinton, A. J. (2014). "The effect of topography on ash-cloud surge generation and propagation." Geological Society, London, Memoirs, 39(1), 179-194.
    Ovarlez, G., Cohen-Addad, S., Krishan, K., Goyon, J., and Coussot, P. (2013). "On the existence of a simple yield stress fluid behavior." Journal of Non-Newtonian Fluid Mechanics, 193, 68-79.
    Pashias, N., Boger, D., Summers, J., and Glenister, D. (1996). "A fifty cent rheometer for yield stress measurement." Journal of Rheology, 40(6), 1179-1189.
    Pashias, N., Boger, D., Summers, K., and Glenister, D. (2000). "A fifty cent rheometer for waste management of environmentally sensitive ore tailings." Mineral Procesing and Extractive Metallurgy Review, 20(1), 115-122.
    Paterson, A. "Is slump a valid measure of the rheological properties of high concentration paste slurries." Proc., of Hydrotransport, 361-374.
    Pegler, S. S., and Balmforth, N. J. (2013). "Locomotion over a viscoplastic film." Journal of Fluid Mechanics, 727, 1-29.
    Perret, D., Locat, J., and Martignoni, P. (1996). "Thixotropic behavior during shear of a fine-grained mud from Eastern Canada." Engineering Geology, 43(1), 31-44.
    Petrascheck, A., and Kienholz, H. (2003). "Hazard assessment and hazard mapping of mountain risks–example of Switzerland." Proc., Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, edited by: Rickenmann, D. and Chen CL, Proceedings 3rd International DFHM Conference, Davos, Switzerland, September, 10-12.
    Pevere, A., Guibaud, G., Van Hullebusch, E., Lens, P., and Baudu, M. (2006). "Viscosity evolution of anaerobic granular sludge." Biochemical Engineering Journal, 27(3), 315-322.
    Pierre, A., Lanos, C., and Estelle, P. (2013). "Extension of Spread-Slump Formulae for Yield Stress Evaluation." Applied Rheology, 23(6).
    Pierson, T. C. (1981). "Dominant particle support mechanisms in debris flows at Mt Thomas, New Zealand, and implications for flow mobility." Sedimentology, 28(1), 49-60.
    Pouliquen, O., and Forterre, Y. (2002). "Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane." Journal of fluid mechanics, 453, 133-151.
    Qian, Y., Yang, W., Zhao, W., Cheng, X., Zhang, L., and Xu, W. (1980). "Basic characteristics of flow with hyperconcentration of sediment." Proceedings of the International Symposium on River Sedimentation, Chinese Society of Hydraulic Engineering Beijing, 175-184.
    Rahmani, Y., Habibi, M., Javadi, A., and Bonn, D. (2011). "Coiling of yield stress fluids." Physical Review E, 83(5), 056327.
    Rajani, B., and Morgenstern, N. (1991). "On the Yield Stress of Geotechnical Materials from the Slump Test." Canadian Geotechnical Journal, 28(3), 457-462.
    Rickenmann, D. (1999). "Empirical relationships for debris flows." Natural Hazards, 19(1), 47-77.
    Rodine, J. D. (1975). "Analysis of the mobilization of debris flows", Stanford University.
    Romano, F. L., Ambrosano, G. M. B., Magnani, M. B. B. d. A., and Nouer, D. F. (2005). "Analysis of the coefficient of variation in shear and tensile bond strength tests." Journal of Applied Oral Science, 13, 243-246.
    Roscoe, R. (1952). "The viscosity of suspensions of rigid spheres." British Journal of Applied Physics, 3(8), 267.
    Roussel, N. (2007). "The LCPC BOX: a cheap and simple technique for yield stress measurements of SCC." Materials and Structures, 40(9), 889-896.
    Roussel, N., and Coussot, P. (2005). "“Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow." Journal of Rheology, 49(3), 705-718.
    Roussel, N., Gram, A., Cremonesi, M., Ferrara, L., Krenzer, K., Mechtcherine, V., Shyshko, S., Skocec, J., Spangenberg, J., and Svec, O. (2016). "Numerical simulations of concrete flow: a benchmark comparison." Cement and Concrete Research, 79, 265-271.
    Saak, A. W., Jennings, H. M., and Shah, S. P. (2004). "A generalized approach for the determination of yield stress by slump and slump flow." Cement and Concrete Research, 34(3), 363-371.
    Santi, P., Cannon, S., DeGraff, J., and Shroder, J. (2013). "Wildfire and landscape change." Treatise on Geomorphology, 13, 262-287.
    Savage, S. B., and Hutter, K. (1989). "The motion of a finite mass of granular material down a rough incline." Journal of Fluid Mechanics, 199, 177-215.
    Savage, S. B., and Mckeown, S. (1983). "Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders." Journal of Fluid Mechanics, 127, 453-472.
    Schatzmann, M., Bezzola, G. R., Minor, H., Windhab, E. J., and Fischer, P. (2009). "Rheometry for large-particulated fluids: analysis of the ball measuring system and comparison to debris flow rheometry." Rheologica Acta, 48(7), 715-733.
    Schatzmann, M. (2005). "Rheometry for large particle fluids and debris flows." ETH Zurich.
    Schatzmann, M., Bezzola, G., Minor, H., and Fischer, P. (2003a). "The ball measuring system-a new method to determine debris flow rheology?" Debris-flow Hazards Mitigation, 387-398.
    Schatzmann, M., Fischer, P., and Bezzola, G. R. (2003b). "Rheological behavior of fine and large particle suspensions." Journal of Hydraulic Engineering, 129(10), 796-803.
    Scheidegger, A. E. (1973). "On the prediction of the reach and velocity of catastrophic landslides." Rock Mechanics, 5(4), 231-236.
    Schowalter, W. R., and Christensen, G. (1998). "Toward a rationalization of the slump test for fresh concrete: Comparisons of calculations and experiments." Journal of Rheology, 42(4), 865-870.
    Schramm, G. (1994). A practical approach to rheology and rheometry, Haake Karlsruhe.
    Sengun, M., and Probstein, R. (1989). "Bimodal model of slurry viscosity with application to coal-slurries. Part 1. Theory and experiment." Rheologica Acta, 28(5), 382-393.
    Seyssiecq, I., Ferrasse, J. H., and Roche, N. (2003). "State-of-the-art: rheological characterisation of wastewater treatment sludge." Biochemical Engineering Journal, 16(1), 41-56.
    Shen, H., and Ackermann, N. L. (1982). "Constitutive relationships for fluid-solid mixtures." Journal of the Engineering Mechanics Division, 108(5), 748-763.
    Shen, L., Jovein, H. B., Sun, Z., Wang, Q., and Li, W. (2015). "Testing dynamic segregation of self-consolidating concrete." Construction and Building materials, 75, 465-471.
    Shen, S., and Xie, S. (1985). "Structure mode and rheologic property of mud debris flow." Proceedings of the International Symposium on Erosion, Debris Flow and Disaster Prevention.
    Shook, C. A., Gillies, R. G., and Sanders, R. S. S. (2002). "Pipeline hydrotransport: With applications in the oil sand industry", SRC Pipe Flow Technology Centre.
    Shreve, R. L. (1968). "The blackhawk landslide", Geological Society of America.
    Sikorski, D., Tabuteau, H., and de Bruyn, J. R. (2009). "Motion and shape of bubbles rising through a yield-stress fluid." Journal of Non-Newtonian Fluid Mechanics, 159(1-3), 10-16.
    Somasumdaran, P. (1995). "Grinding aids: a review of their use, effects and mechanisms." Selected Topics in Mineral Processing.
    Sosio, R., Crosta, G., and Frattini, P. (2007). "Field observations, rheological testing and numerical modelling of a debris‐flow event." Earth Surface Processes and Landforms, 32(2), 290-306.
    Spelay, R. B. (2007). "Solids transport in laminar, open channel flow of non-Newtonian slurries."
    Steffe, J. F. (1996). "Rheological methods in food process engineering", Freeman press.
    Sumner, R., Munkler, J., Carriere, S., and Shook, C. (2000). "Rheology of kaolin slurries containing large silica particles." Journal of Hydrology and Hydromechanics/Vodohospodarsky Casopis, 48(2), 110-124.
    Tabuteau, H., Coussot, P., and de Bruyn, J. R. (2007). "Drag force on a sphere in steady motion through a yield-stress fluid." Journal of Rheology, 51(1), 125-137.
    Tadros, T. F. (2011). "Rheology of dispersions: principles and applications", John Wiley & Sons.
    Takahashi, T. (1991). "Debris flow. IAHR/AIRH Monograph." Balkema, Rotterdam.
    Takahashi, T. (1993). "Mechanism and existence criteria of various flow types during massive sediment transport." Proc., International Workshop on Fluvial Hydraulics of Mountain Regions, Kagoshima, Japan.
    Talmon, A. M., van Kesteren, W. G., Sittoni, L., and Hedblom, E. P. (2014). "Shear cell tests for quantification of tailings segregation." The Canadian Journal of Chemical Engineering, 92(2), 362-373.
    Tan, B. (1985). "The activity of debris flow in Chinese loess region and its prevention." Proc. Int. Syrup. on Erosion, Debris Flow and Disaster Prevention, Tsukuba, Japan, 187-190.
    Tanigawa, Y. (1992). "Rheological study on slumping behavior of fresh concrete." Transactions of the Japan Concrete Institute, 14, 1-8.
    Tanigawa, Y., and Mori, H. (1985). "Slumping behavior of fresh concrete." Research reports of the Faculty of Engineering, Mie University, 10, 85-96.
    Tanigawa, Y., and Mori, H. (1989). "Analytical study on deformation of fresh concrete." Journal of Engineering Mechanics, 115(3), 493-508.
    Tanner, R. (1985). "Engineering Rheology, Clarendon". Oxford, 15, 355-370.
    Tattersall, G. H., and Banfill, P. F. (1983). The rheology of fresh concrete.
    Tattersall, G. H., and Bloomer, S. (1979). "Further development of the two-point test for workability and extension of its range." Magazine of Concrete Research, 31(109), 202-210.
    Thomas, A. (1999). "The influence of coarse particles on the rheology of fine particle slurries." Proceedings of Rheology in the Mineral Industry II, 113-123.
    Thomas, D. G. (1963). "Transport characteristics of suspensions VII. Relation of hindered‐settling floc characteristics to rheological parameters." AIChE Journal, 9(3), 310-316.
    Thomas, D. G. (1965). "Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles." Journal of Colloid Science, 20(3), 267-277.
    Thrane, L. N. (2007). "Form filling with self-compacting concrete." Ph. D. Thesis.
    Torrance, J. K., and Pirnat, M. (1984). "Effect of pH on the rheology of marine clay from the site of the South Nation River, Canada, landslide of 1971." Clays and Clay Minerals, 32(5), 384-390.
    Tyrach, J. (2001). "Rheologische charakterisierung von zementären baustoffsystemen". PhD thesis, Technische Fakultät der Universität Erlangen-Nürnberg.
    Uhlherr, P. H., Guo, J., Fang, T., and Tiu, C. (2002). "Static measurement of yield stress using a cylindrical penetrometer." Korea-Australia Rheology Journal, 14(1), 17-23.
    Utracki, L. (1993). "The rheology of two-phase flows." Rheological Measurement, Springer, 479-594.
    Van, O. H., and Hsu, P. (1977). "An introduction to clay colloid chemistry." For Clay Technologists, Geologists, and Soil Scientists Wiley New York.
    Van Wazer, J. R. (1963). "Viscosity and flow measurement: a laboratory handbook of rheology", Interscience Publishers.
    Wallevik, J. E. (2006). "Relationship between the Bingham parameters and slump." Cement and Concrete Research, 36(7), 1214-1221.
    Wallevik, O., and Gjørv, O. (1990). "25 development of a coaxial cylinders viscometer for fresh concrete." Properties of Fresh Concrete: Proceedings of the International RILEM Colloquium, 213.
    Wan, Z. (1982). "Bed Material Movement in Hyperconcentrated Flow. Ser. Pap.. 31." Inst. Hydrodyn. Hydraul. Eng., Tech. Univ. Denmark.
    Wan, Z., Qian, Y., Yang, W., and Zhao, W. (1979). "The experimental study on hyper concentrated sediment flow." Yellow River, 1, 5-6.
    Wan, Z., and Wang, Z. (1994). "Hyperconcentrated flow Monograph Series of IAHR." Balkema, Rotterdam, the Netherlands.
    Wang, J. S. (2007). "Effect of sediment composition on debris flow rheological parameters. ." PhD Thesis, National Cheng Kung University, Taiwan (In Chinese).
    Wang, Y., and Forssberg, E. (1995). "Dispersants in stirred ball mill grinding." KONA Powder and Particle Journal, 13, 67-77.
    Warnett, J., Denissenko, P., Thomas, P., Kiraci, E., and Williams, M. (2014). "Scalings of axisymmetric granular column collapse." Granular Matter, 16(1), 115-124.
    Wein, O., Mitschka, P., and Wichterle, K. (1981). "Rotational flows of non-Newtonian liquids." Published (in Czech) as Studie(5).
    Whorlow, R. (1980). "Rotational viscometers." Rheological Techniques.
    Wildemuth, C., and Williams, M. (1985). "A new interpretation of viscosity and yield stress in dense slurries: coal and other irregular particles." Rheologica Acta, 24(1), 75-91.
    Williams, D. A., Saak, A. W., and Jennings, H. M. (1999). "The influence of mixing on the rheology of fresh cement paste." Cement and Concrete Research, 29(9), 1491-1496.
    Wu, C. (2014). "A study on flood-induced sediment transport and its sluicing methods in a reservoir." PhD Thesis, National Cheng Kung University, Taiwan. (In Chinese).
    Wu, H., He, N., and Zhang, X. (2015). "Numerical model of viscous debris flows with depth-dependent yield strength." Journal of GeoEngineering, 10(1), 1-10.
    Yang, L., Wang, H., Li, H., and Zhou, X. (2019). "Effect of high mixing intensity on rheological properties of cemented paste backfill." Minerals, 9(4), 240.
    Yang, W., and Zhao, W. (1983). "An experimental study of the resistance to flow with hyperconcentration in rough flumes." Proceedings of the Second International Symposium on River Sedimentation, Engl. Sum, 54-55.
    Yoshimura, A. S., Prud'homme, R. K., Princen, H., and Kiss, A. (1987). "A comparison of techniques for measuring yield stresses." Journal of Rheology, 31(8), 699-710.
    Zhang, X., Liu, T., Wang, Y., and Luo, J. "The main features of debris flows and control structures in Hunshui gully, Yunnan province, China." Proc., Proceedings of the International Symposium on Erosion, Debris Flow Disaster and Prevention, Tsukuba Japan, 181-186.
    Zhou, Z., Solomon, M. J., Scales, P. J., and Boger, D. V. (1999). "The yield stress of concentrated flocculated suspensions of size distributed particles." Journal of Rheology, 43(3), 651-671.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE