| 研究生: |
莊二龍 Chuang, Erh-Lung |
|---|---|
| 論文名稱: |
高效率感應電機之特性分析 Characteristic Analyses of High Efficiency Induction Machines |
| 指導教授: |
王醴
Wang, L. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 有限元素 |
| 外文關鍵詞: | finite element |
| 相關次數: | 點閱:35 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨其目標為提昇傳統感應電機之效率並分析電機特性分析。由於一般傳統感應電機主要缺點在於其效率低於同步電機,故如何就電機的尺寸、材料及設計方法等因素,以提昇感應電機的效率乃成為本論文研究的重心。在本論文中分別使用感應電機之等效電路與有限元素兩種模型,分析高效率感應電機之穩態及動態特性。
在本論文的研究內容中,將以兩部三相、220 V(Δ)/380 V(Y)、4極、1馬力之傳統感應電機與高效率感應電機做比較,針對這兩部電機在感應馬達、獨立自激式感應發電機以及市電併聯型感應發電機等三種運轉模式做分析,除完成各運轉模式之穩態及動態特性外,並搭配實測及模擬方式做深入驗證,俾歸納及分析高效率感應電機的重要特性。
The purpose of this thesis focuses on both efficiency improvement and characteristic analyses of conventional induction machines. The primary drawback of a conventional induction machine is its lower efficiency as compared to a synchronous machine of the same ratings and size. This thesis employs both equivalent-circuit method and finite-element method to analyze transient and steady-state performance of an induction machine in order to promote efficiency by modifying its size, the employed core material, and difference design scheme, etc.
The performance of two three-phase, 220 V(Δ)/380 V(Y), 4 poles, 1 HP induction machines of conventional and high-efficiency are employed to investigate and compared. Three operating modes of an induction machine, i.e., induction motor, isolated self-excited induction generator and grid-connected induction generator, are respectively utilized. Both steady-state and transient characteristics as well as both experimental and simulated results of the two studied induction machines are performed and compared in order to validate the important features of the high-efficiency induction machines.
[1] S. Williamson and C.I. McClay, “Optimization of the geometry of closed rotor slots for cage induction motors,” IEEE Transactions on Industry Applications, vol. 32, no. 1, 1996, pp. 560-568.
[2] S. Williamson and M.A. Mueller, “Calculation of the impedance of rotor cage end rings,” IEE Proceedings, Part B, vol. 140, no. 1, January 1993, pp. 51-60.
[3] R. Buschart, “Motor efficiency,” IEEE Transactions on Industry Applications, vol. 15, no. 5, 1979, pp. 507-510.
[4] J. Haataja and J. Pyrhönen, “Improving 3-phase induction motors’ efficiency in Europe, The challenge for manufactures,” IEE Conference Publication, EMD 97, no. 444, September 1997, pp. 190-194.
[5] A.H. Bonnett, “Reliability comparison between standard and energy efficient motors,” IEEE Transactions on Industry Applications, vol. 33, no. 1, 1997, pp. 135-142.
[6] J.A. Kilbum and R.H. Daugherty, “NEMA Design E Motors and Controls,” Copying Material IEEE, 1998, pp. 1-10.
[7] E. Vassent, G. Meunier, and A. Foggia, “Simulation of induction machines using complex magnetic finite element method coupled with the circuit equations,” IEEE Transactions on Magnetics, vol. 27, no. 5, September 1991, pp. 4246-4249.
[8] R. De Weerdt and R. Belmans, “Squirrel cage induction motor end effects using 2D and 3D finite elements,” IEE Conference on Electrical Machines and Drives, 1995, pp. 62-66.
[9] A. Bentounsi and A. Nicolas, “On line diagnosis of defaults on squirrel cage motors using FEM,” IEEE Transactions on Magnetics, vol. 34, no. 5, September 1998, pp. 3511-3514.
[10] A.C. Smith, “Integrating FE into induction motor design-a marriage of inconvenience?” 2000 The Institution of Electrical Engineers, pp. 4/1-4/7.
[11] D.G. Dorrell, T.J.E. Miller and C.B. Rassmussen, “Inter-bar currents in induction machines,” Industry Applications Conference on 2001 36th IAS Annual Meeting, vol. 2, 2001, pp. 729-736.
[12] H. Kometani and K. Nakanishi, “3-D Electro-magnetic analysis of a cage induction motor with rotor skew,” IEEE Transactions on Energy Conversion, vol. 11, no. 2, June 1996, pp. 331-337.
[13] P. Zhon, S. Stanton, and Z.J. Cendes, “Dynamic modeling of three phase and single phase induction motors,” International Conference on Electric Machines and Drives, May 1999, pp. 556-558.
[14] K. Davey, “Rotating field analysis using boundary element methods,” IEEE Transactions on Magnetics, vol. 35, no. 3, May 1999, pp. 1402-1405.
[15] A.I. Alolah, “Capacitance requirements for three phase self-excited reluctance generator,” IEE Proceedings, Part C, vol. 138, no. 3, May 1991, pp. 193-198.
[16] 吳榮隆、郭政謙等共譯,電機機械,美商麥格羅-希爾國際股份有限公司,高立出版社,民國83年。
[17] 何清佳,電機設計,全華科技圖書股份有限公司,民87年2月。
[18] 李玉楨,應用有限元素法分析橫向磁場式開關磁阻型線性電動機之空間電磁力,國立中山大學電機工程研究所碩士論文,民國86年6月。
[19] 蔣豫政,獨立串聯自激同步發電機之研究,國立成功大學電機工程研究所碩士論文,民國86年6月。
[20] 曹慶忠,市電併聯型感應發電機之分析,國立成功大學電機工程研究所碩士論文,民國89年6月。
[21] 郭松村,獨立自激式感應發電機之負載特性分析,國立成功大學電機工程研究所博士論文,民國91年12月。
[22] 陳賜恭,單相感應電動機與單相感應馬達之特性分析,國立成功大學電機工程研究所碩士論文,民國91年6月。
[23] 劉士傑,以有限元素法探討電力系統三相電壓不平衡之成因及對感應電動機之影響,國立雲林科技大學電機工程系碩士論文,民國90年6月。
[24] 陳正宗、邱垂鈺,有限元素分析與工程實例-MSC/NASTRAN軟體應用,北門出版社,民國85年6月初版。
[25] CEDRAT, FLUX2D Version 7.40 User’s Guide, June 1999.
[26] MAGSOFT, Flux2D Version 7.2x Command Reference, 1993-98 Magsoft Corporation, 1998.
[27] MAGSOFT, PREFLU2D TEE Induction Motor Tutorial Version 2.2x, 1993-98 Magsoft Corporation, 1998.