簡易檢索 / 詳目顯示

研究生: 劉宗霖
Liu, Zong-Lin
論文名稱: 利用靜電紡絲技術製備碳化矽/奈米碳纖複材應用於高效率鋰電池負極材料之研究
Fabrication of Silicon Carbide/Carbon Nanofibers Composite by Electrospinning and Applications on High-Performance Li-ion Battery Anode Material
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 碳化矽靜電紡絲鋰離子電池高功率放電電漿改質
外文關鍵詞: Silicon carbide, electrospinning, li-ion battery, fast discharge, plasma
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化矽(SiC)是一具有高化學穩定性、高硬度、高導熱性以及低熱膨脹係數的陶瓷半導體材料[1]。因此本研究以聚丙烯腈(polyacrylonitrile, PAN)高分子溶液導入不同含量的二氧化矽(Silicon dioxide, SiO2),利用電紡絲技術製備出不同碳矽比例的SiO2/PAN複合奈米纖維,再以1400oC高溫鍛燒,使SiO2與PAN形成的碳纖維反應成為碳化矽/奈米碳纖複合材料。
    以掃描式電子顯微鏡之元素分布圖(EDS mapping)觀察紡製的纖維內SiO2粒子均勻分散在複合奈米纖維內;經過高溫鍛燒後的奈米纖維由傅立葉轉換紅外線光譜儀(FTIR)分析,在797cm-1位置Si-C的吸收峰強度大幅增強,而1070cm-1位置Si-O吸收峰強度變弱,表示碳纖維與SiO2反應形成SiC;由X射線繞射儀(XRD)在2θ為35.7°、60.0°、71.8°處觀察到-SiC結晶的特徵繞射峰,證實製備具有碳化矽材料的奈米纖維;由熱重分析儀(TGA) 在空氣氣氛下,碳矽比為20.58、6.86和3.43的SiC/Carbon複合材料分別剩下的重量百分比分別為16wt%、38 wt%及58 wt%,隨著碳矽比例下,剩餘重量變多,得到SiC材料較多;由X射線光電子能譜儀(XPS)來鑑定鍛燒後不同碳矽比之元素含量與元素鍵結,碳矽比愈小,C 1s比例下降,Si 2p比例上升;拆解C 1s有C-C鍵與C-Si鍵,隨著碳矽比降低C-Si特徵峰增強;拆解Si 2p有Si-C鍵與Si-O鍵,隨著碳矽比降低Si-C特徵峰增強,Si-O減弱,得知Si-O反應的更完全。
    將鍛燒後得到的碳化矽/奈米碳纖複合材料極片進行半電池組裝,經過電池測試後,C/Si=3.43比例在0.1C放電電容量為103mAh/g,1C放電電容量92mAh/g,10C放電電容量88mAh/g,至20C時放電電容量仍有85mAh/g;20C所需的時間為0.1C的1/200,大電流放電電容量下降17.5%。與未含碳化矽之奈米碳纖比較,雖然純碳纖在0.1C放電電容量165mAh/g較高,但在10C時放電電容量剩下92mAh/g,下降44.5%,在12C後放電電容急劇降低,內部結構崩壞無法再進行充放電。結果顯示含有碳化矽的奈米纖維能承受瞬間大電流放電,電池的放電電容量還能維持,並以0.1C活化電池之放電電容值沒有降低。
    在60度高溫下,碳化矽/奈米碳纖複合材料極片進行半電池組裝,以0.1C放電與室溫放電電容無明顯變化,到10C之放電電容雖然下降50%,但再以0.1C放電仍有90mAh/g。純碳纖負極放電速率無論是在0.1C或提高到10C時效能皆比添加碳化矽奈米碳纖負極差。含有碳化矽之奈米碳纖負極材料之鋰電池可在高溫條件下充放電。
    以氧電漿改質SiC/Carbon複合材料後,材料表面形成氧化層為有效的鈍化層,應用在鋰電池負極材料,降低首次不可逆放電電容,同時提高可逆電容。

    Silicon carbide (SiC) is a ceramic semiconductor material which has high chemical stability, high hardness, high thermal conductivity and low thermal expansion coefficient. Therefore, this study use polyacrylonitrile (polyacrylonitrile, PAN) polymer solution with different quantities of silica (Silicon dioxide, SiO2) to fabricate different proportions of carbon silicon SiO2/PAN nanofibers composite by electrospinning technique. SiO2 / PAN fibers form SiC / carbon nanofibers composite material at 1400°C.
    Observed the spun fibers by EDS mapping, SiO2 particles are uniformly dispersed in the nanofibers composite; High temperature treated nanofibers analyzed by Fourier transform infrared spectrometer (FTIR), the intensity of the absorption peak 797cm-1 Si-C is greatly enhanced, and the intensity of the absorption peak 1070cm-1 Si-O becomes weak. It represents reaction of carbon fibers and SiO2 to form SiC; by X-ray diffraction (XRD), β-SiC crystal characteristic diffraction peaks are observed at 2θ=35.7°、60.0° and 71.8°, confirming the preparation of nanofibers with silicon carbide material; by thermal gravimetric analyzer (TGA) in air, the carbon to silicon ratio of 3.43、6.86 and 20.58 SiC/Carbon composite respectively remain with 16wt%、38wt% and 58wt%, with the proportion decreasing, the remaining weight increasing,obtaining more SiC material; X-ray photoelectron spectroscopy (XPS) identifies the elements content of different proportion of carbon to silicon and element bonding after heat treatment. The smaller the ratio of carbon to silicon, C 1s decreases, and Si 2p increases; Taking apart C 1s to C-C bond and C-Si bond, the carbon to silicon ratio is reduced as C-Si peaks enhanced; Taking apart Si 2p to Si-C bond and Si-O bond, the carbon to silicon ratio is reduced as the Si-C peak enhances, and Si-O peak weakens. We can find that Si -O reacts completely.
    Assembling SiC/carbon nanofibers composite as anode material on semi battery after heat treatment of SiO2/PAN nanofibers composite, after battery test, C/Si=3.43 discharge capacity at 0.1C is 103mAh/g, discharge capacity at 1C is 92mAh/g, discharge capacity at 10C is 88mAh/g, and even discharge capacity at 20C remains 85mAh/g; time required for 20C is 200 times longer than 0.1C’s, high-current discharge capacity decreasing 17.5%. Although pure carbon fibers capacity at 0.1C discharge is 165mAh/g, higher than SiC/Carbon nanofibers’, the discharge capacity at 10C is 92mAh/g, reduced 44.5%. The discharge capacity rapidly reduced after 12C, because the internal structure collapsed. The results showed that containing silicon carbide nanofibers can stand transiently high-current discharge, and the battery discharge capacity can be maintained. Reactivation of the battery at 0.1C shows the discharge capacity remains.
    Assembling SiC/Carbon nanofibers composite as anode material on semi battery, charge capacity and discharge capacity at 0.1C and at 60°C do not change significantly compared with that in room temperature. Though the discharge capacity decreases 50% at 10C, but reactivation at 0.1C discharge capacity remains 90mAh/g. The high-performance of pure carbon as anode material either at 0.1C or 10C discharge capacity is worse than SiC/Carbon nanofibers composite’s. Li-ion battery containing SiC/Carbon nanofibers composite as anode material can be charged and discharged at high temperatures.
    After oxygen plasma modifies SiC / Carbon Composites, oxide layer is formed on the surface as an active passivation layer. Applications on the lithium battery anode material decreases first cycle irreversible capacity, while increasing reversible capacity.

    目錄 摘要 I Abstract III Extended Abstract VI 誌謝 XVI 目錄 XVII 表目錄 XX 圖目錄 XXI 第一章 緒論 1 第二章 文獻回顧 4 2-1負極材料的發展 4 2-1-1碳材料 6 2-1-2碳材料性能的改進方法 14 2-1-3複合負極材料 16 2-2 碳化矽的簡介 18 2-2-1 碳化矽的發現與早期合成方法 18 2-2-2 碳化矽的製造方法 19 2-2-3 碳化矽的結構 20 2-3 研究動機與目的 24 第三章 實驗部分 26 3-1 實驗藥品 26 3-2 實驗儀器 27 3-2-1 非分析用儀器 27 3-2-2 分析用儀器 28 3-3 實驗步驟 30 3-3-1 PAN高分子的合成 30 3-3-2 Silica sol gel製備 30 3-3-3 SiO2/PAN複合電紡溶液配製 30 3-3-4 SiO2/PAN複合奈米纖維製備 31 3-3-5 SiC/Carbon複合奈米纖維製備 31 3-4 電漿改質法 32 3-5 鋰電池製作組裝 33 3-5-1 負極極片製作 33 3-5-2 Sputter濺鍍銅 33 3-5-3 鋰電池組裝 33 第四章 結果與討論 34 4-1 SiO2/PAN複合奈米纖維之結構與性質分析 34 4-1-1複合奈米纖維之結構 34 4-1-2 SiO2/PAN纖維之均勻性分析 36 4-2 SiC/Carbon複合奈米纖維之結構與性質分析 37 4-2-1 性質分析 37 4-2-1-1 FT-IR 37 4-2-1-2 XPS 39 4-2-1-4 XRD 42 4-2-1-5 Raman 43 4-2-2 表面型態 45 4-2-3 內部結構 47 4-3 SiC生長機制 48 4-3-1 碳化矽非均相反應與均相反應生長 49 4-3-2 影響碳化矽均相及非均相生長因素 51 4-4 SiC/Carbon複合材料負極半電池組裝與測試 52 4-4-1常溫充放電測試 52 4-4-2常溫高功率放電 54 4-4-3添加CNT-AN常溫高功率放電 57 4-4-4高溫高功率放電 58 4-4-5循環伏安法 59 4-5電漿表面改質 61 4-5-1 SiC/Carbon複合奈米纖維電漿表面改質後之結構 61 4-5-2性質分析 66 4-5-3電漿改質後SiC/Carbon複合材料負極半電池組裝與測試 67 第五章 結論 68 參考文獻 69

    [1] Bhatnagar , et al.,. IEEE Transactions on Electron Devices. 40 (3): 645–655 (1993)
    [2] C.K.Chan, et al. Nature Nanotechnology 3, 31 - 35(2008)
    [3] W.S. Wang, et al. The Study of Polymerization and Electrochemical Properties of Some N-Hydroxy Alkyl Pyrroles. Chemistry, 2001 (2002)
    [4] S.Y. Huang, et al. J. Electrochem. Soc. volume 142,issue 9, L142-L144(1995)
    [5] Y.C. Chen. , et al. Surface and Coatings Technology Volume 202, Issues 4–7, Pages 1313–1318 (2007)
    [6] A. Herold, et al. Materials Science Forum Volumes 152 – 153, Pages 281-288 (1994)
    [7] JO Besenhard. , et al. Journal of Power Sources Volume 54, Issue 2, Pages 228–231 (1995)
    [8] J. R. Dahn, et al. Science 27 Vol. 270 no. 5236 pp. 590-593(1995)
    [9] Minoru Inaba, et al. J. Electrochem. Soc. volume 142, issue 1, 20-26(1995)
    [10] C.C. Lin. Electrochemical Effect of Catalyst and Modifer Added to Anode Materials as Lithium Ion Battery (2011)
    [11] C.P. Chu. Basal Plane Alignment in Thermosetting Resins Resins During Fabrication of Carbon-Carbon Composites(II).(2001)
    [12] S.P. Pang, et al. Journal of Materials Science 30: 5889(1995)
    [13] Lely, et al. Proceedings of the Royal Society 313:453-475 (1969)
    [14] J. J. Berzelius's reduction of potassium fluorosilicate by potassium (1810)
    [15] Robert Sydney Marsden's (1856–1919) dissolution of silica in molten silver in a graphite crucible (1881)
    [16] Albert Colson's heating of silicon under a stream of ethylene (1882)
    [17] Weimer, A. W.. Carbide, nitride, and boride materials synthesis and processing. Springer. p. 115. ISBN 0-412-54060-6. (1997)
    [18] E.G. Acheson. U.S. Patent 492,767. (1893)
    [19] Dunwoody, Henry H.C. U.S. Patent 837,616 Wireless telegraph system (silicon carbide detector) (1906)
    [20] Hart, Jeffrey A.; Stefanie Ann Lenway, Thomas Murtha. "A History of Electroluminescent Displays".
    [21] Moissan, Henri . Comptes rendus 139: 773–86(1904)
    [22] Di Pierro S., et al.. American Mineralogist 88: 1817–21(2003)
    [23] Alexander, C. M. O'D.. Nature 348 (6303): 715–17(1990)
    [24] A. S. Vlasov, et al. Obtaining silicon carbide from rice husks. Refractories. 32 (9-10): 521–523. (1991)
    [25] Yang Zhong, et al. Journal of American Ceramic Society. 93: 3159. (2010)
    [26] Harris, Gary Lynn. Properties of silicon carbide. IET. 19; 170–180.(1995)
    [27] Lely, Jan Anthony. Berichte der Deutschen Keramischen Gesellschaft. 32: 229–236. (1955)
    [28] N.Ohtani, et al. Nippon Steel Technical Report no. 84.(2001)
    [29] Byrappa, K.,et al. Crystal growth technology. Springer. 180–200. ISBN 3-540-00367-3. (2003)
    [30] Bakin, Andrey S. SiC materials and devices, vol. 1, edited by M. Shur, S. Rumyantsev, M. Levinshtein - Chap.:"SiC Homoepitaxy and Heteroepitaxy". World Scientific. 43–76.(2006)
    [31] Pitcher, M.W., et al. Advanced Materials. 16 (8): 706.(2004)
    [32] Bunsell, A. R., et al. Journal of Materials Science. 41 (3): 823.(2006)
    [33] Laine, Richard M., et al.Chemistry of Materials. 5 (3): 260.(1993)
    [34] 黃靖涵,SiC的產業應用http://www.nanoclub.tw/research/SiC_on_Si/SiC_on_Si_wafer_materials.htm
    [35] 黃忠良,工程陶瓷(基礎研究‧應用技術),復漢出版社印行,16-18
    [36] 林博文,89 年工程陶瓷應用技術研討會論文集,國科會工程科技推展中心 155(2000)
    [37] 汪建民、林博文,陶瓷技術手冊,中華民國粉末冶金協會745-776(1994)
    [38] I. H. Chen, C. C. Wang, C. C. Chen, Carbon 48: 604 –611(2010)

    無法下載圖示 校內:2024-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE