簡易檢索 / 詳目顯示

研究生: 黃瀚寬
Huang, Han-Kuan
論文名稱: 具非極小相位系統與非線性干擾之滑動控制器設計:零點配置法
Sliding Mode Tracker Design for Non-minimum Phase Systems with Nonlinear Disturbances: Zero Assignment Method
指導教授: 蔡聖鴻
Tsai, Sheng-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 46
中文關鍵詞: 零點配置非極小相位系統滑動控制輻射基底函數類神經網路
外文關鍵詞: Zero assignment, non-minimum phase system, sliding mode control, radial basic function neural network
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對非線性干擾之非方陣/方陣、非極小相位系統提出藉由整合滑動控制器設計跟零點配置法的新穎性強健追蹤器。一般而言,非極小相位系統架構下,其輸出響應會產生不如預期之軌跡,特別是在設計完控制器後,輸出響應依然無法得到有效的改善。為了克服這些問題,因此提出一種輔助系統,使得非極小相位系統轉換為擴增型的極小相位系統,由此設計控制器能有效改善其輸出響應之性能。當額外擾動對系統產生影響後,提出一幅射基底函數網路之滑動控制器設計,將擾動抑制並改善滑動控制器造成的不可預期抖動之現象,使得系統輸出響應取得預期之效果。本論文提出一些範例來說明該方法的成效。

    This thesis presents a new approach by integrating the sliding model control and the zero assignment method for the robust tracker design for square/non-square non-minimum phase (NMP) multi-input multi-output (MIMO) systems with nonlinear disturbances. Generally, the output of the controlled NMP system cannot track an arbitrary reference trajectory as good as expected. To overcome this issue, we propose an auxiliary system to augment the originally controlled system in order to convert the NMP system to a minimum phase (MP) system. In order to cope with the external nonlinear disturbance and the undesired chattering phenomenon induced by the sliding model control, the radial basis function neural network (RBFNN)-based sliding mode control (SMC) is utilized in this paper. Some illustrative examples are given in this thesis to demonstrate the effectiveness of the proposed method.

    中文摘要 I Abstract II Acknowledgement III List of Contents IV List of Figures V Chapter 1 Introduction 1 Chapter 2 Zero Assignment for Multivariable Systems Using Pole Assignment Method 5 2.1. Computing finite invariant zeros for linear square system 6 2.2. Reduction to pole assignment in regular state-space system 7 2.3. Finite invariant zeros for linear system with direct feedthrough term 9 Chapter 3 Conversion of NMP to MP with Direct Feedthrough Term 12 3.1. Conversion of non-square system to square system 13 3.2. Conversion of NMP system to augmented MP system 14 3.3. An illustrative example 18 Chapter 4 RBF-based SMC Controller Design 24 4.1. Discussion of unknown nonlinear disturbance 25 4.2. RBFNN-based sliding mode controller design 26 4.3. Illustrative examples 31 Chapter 5 Conclusion 43 Reference 44

    [1] Chang, J.L., Ting, H.C., and Chen, Y.P., “Robust Discrete-time output tracking controller design for non-minimum phase systems,” Journal of System Design and Dynamics, vol. 2, no. 4, pp. 950-961, 2008.
    [2] Chen, H. and Wo, S., “RBF neural network of sliding mode control for time-varying 2-DOF parallel manipulator systems,” Mathematical Problems in Engineering, vol. 2013, pp. 1-10, 2013.
    [3] Chen, Y. and Wang, W., “RBF based discrete terminal sliding mode control for flight simulator,” International Conference on Mechatronics and Automation, pp. 337-342, 2011.
    [4] Chen, P.C., Chen, C.W., and Chiang, W.L.,”GA-based modified adaptive fuzzy sliding mode controller for nonlinear systems,” Expert Systems with Applications, vol. 36, no. 3, pp. 5872-5879, 2009.
    [5] Chang, W. D. and Yan, J. J., “Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems,” Chaos, Solitons and Fractals, vol. 26, no. 1, pp. 167-175, 2005.
    [6] Da, F., “Decentralized sliding mode adaptive controller design based on fuzzy neural networks for interconnected uncertain nonlinear systems,” IEEE Transactions on Neural Networks, vol. 11, no. 6, pp. 1471-1480, 2000.
    [7] Hoagg, J.B., and Bernstein, D.S., “Nonminimum-phase zeros-must to do about nothing-classic control-revisted part II,” IEEE Control System Magazine, vol. 27, pp. 45-57, 2007.
    [8] Huang, C., Naghdy, F., and Du, H., “Sliding mode predictive tracking control for uncertain Steer-by-Wire system,” Control Engineering Practice, vol. 85, pp. 194-205, 2019.
    [9] Lin J.S., Huang C.F., Liao T.L., and Yan J.J., “Design and implementation of digital secure communication based on synchronized chaotic systems,” Digital Signal Processing. vol. 20, no. 1, pp. 229-237, 2010.
    [10] Lin, J., Lian, R.J., Huang, C.N., and Sie, W.T., “Enhanced fuzzy sliding mode controller for active suspension systems,” Mechatronics, vol. 19, no. 7, pp. 1178-1190, 2009.
    [11] Lin, C.K., “Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 6, pp. 849-859, 2006.
    [12] Singla, M., Shieh, L.S., Song, G., and Xie, L., “A new optimal sliding mode controller design using scalar sign function,” ISA Transactions. vol. 53, no. 2, pp. 267-279, 2014.
    [13] Smagina, Y.M., “Zero assignment in multivariable system using pole assignment method,” 2002[online]. Available: http://arxiv.org/abs/math/0207094.
    [14] Tsai, S.H., Liao, Y.T., Ebrahimzadeh, F., Lai, S.Y., Su, T.J., Guo, S.M., Shieh, L.S., and Tsai, T.J., “A new PI optimal linear quadratic state-estimate tracker for continuous-time non-square nonminimum phase systems,” International Journal of Systems Science, vol. 48, no. 7, pp. 1438-1459, 2017.
    [15] Tsai, S.H., Liao, Y.T., Lin, Z.W., Ebrahimzadeh, Guo, S.M, Shieh, L.S., and Canelon, J.I., “A new PI-based optimal linear quadratic state estimate tracker for discrete-time non-square non-minimum phase systems,” International Journal of Systems Science, vol. 49, no. 9, pp. 1856-1877, 2018.
    [16] Tsai, S.H., Wang, H.H., Guo, S.M, Shieh, L.S., and Canelon, J.I., “A case study on the universal compensation-improvement mechanism: A robust PID filter-shaped optimal PI tracker for systems with/without disturbances,” Journal of the Franklin Institute, vol. 355, pp. 3583-3618, 2018.
    [17] Tao, Y., Zheng, J., and Lin, Y., “A sliding mode control-based on a RBF neural network for deburring industry robotic systems,” International Journal of Advanced Robotic Systems. 2016.
    [18] Verhgese, G.C., Levy, B.C., and Kailath, T., “A generalized state-space for singular system,” IEEE Transactions on Automatic Control, vol. 26, no. 4, pp. 811-831, 1981.
    [19] Wang, N., Deng, Q., Xie, G., and Pan, X., “Hybrid finite-time trajectory tracking control of a quadrotor” ISA Transactions, vol. 90, pp. 278-286, 2019.
    [20] Wu, C., Schaft, A.V.D., and Chen, J., “Robust trajectory tracking for incrementally passive nonlinear systems,” Automatica, vol. 107, pp. 595-599, 2019.

    無法下載圖示 校內:2024-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE