研究生: |
林俊廷 Lin, Chun-Ting |
---|---|
論文名稱: |
氧化鋅摻鈮薄膜製備、表面改質及其運用於電阻式記憶體、光感測器:紫外光臭氧處理與真空退火 The Fabrication of ZnO:Nb Films, Surface Modifications for RRAMs and Photodetectors: UV-Ozone and Vacuum Annealing Effects |
指導教授: |
朱聖緣
Chu, Sheng-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 鈮摻雜 、氧化鋅 、電阻式記憶體 、後處理 、光感測器 |
外文關鍵詞: | Nb-doped, Zinc oxide (ZnO), resistive random access memory (RRAM), post treatment, photodetector |
相關次數: | 點閱:90 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅是具有寬能隙及高激子束缚能的半導體材料,擁有優異的電學、光學、聲波及機械特性。文獻中有許多致力於改善氧化鋅薄膜結構和電性的方法。其中,摻雜是在半導體製程中被廣泛運用於提升電性的方法。在本論文,我們使用射頻濺鍍法製備氧化鋅摻雜鈮薄膜(NZO)並將其運用在電阻式記憶體及光感測器上以改善其元件特性。
在本實驗的第一部分,藉由濺鍍製備不同鈮摻雜濃度之氧化鋅摻鈮薄膜並探討其材料特性,後將不同濃度的薄膜應用在電阻式記憶體上。實驗發現藉由摻雜鈮可以減少元件功率消耗並增加其穩定度,相較原先純氧化鋅元件可以擁有比較低的1.21V set操作電壓。
而在本實驗的第二部分,為了呈現出較低的位元錯位率而提高記憶窗,我們使用二種不同後處理方法以改善NZO薄膜特性並運用於元件上,包括UV ozone 及真空退火,可以使記憶窗分別從102 提升至 5×103 和 104。
最後,我們探討氧化鋅薄膜運用於光感測器的傳導機制,並藉由摻雜鈮以改善光感測器的元件特性。
Zinc oxide (ZnO) is a conventional semiconductor material exhibiting a large exciton energy (~ 60 meV), direct band gap (~3.3 eV) which has many unique electrical, optical, acoustic and mechanical properties. There are many proposals for enhancing the structural and electrical properties of ZnO thin films in the literature. Among them, doping is a crucial process for the semi-conductor fabrication and it is widely used to modulate the electrical properties. In this study, we attempt to improve the structural and electrical properties of ZnO thin films by doping niobium (Nb) with regard to their potential application to resistive random access memory (RRAM) and photodetectors.
In the first part of this study, various concentration of Nb-doped ZnO (NZO) thin films are deposited on Pt/TiO2/SiO2/Si substrates by radio frequency (RF) magnetron sputtering system. The detailed investigation of material characteristics in all NZO thin films is presented.
In the second part of this study, the proposed NZO thin films are applied to the solid-electrolyte of RRAMs. The electrical characteristic, reliability test, conduction mechanism of the devices is also examined. NZO films show low power consumption and high stability with a low set voltage of 1.21V compared with ZnO films.
In the third part of this study, in order to have low bit error rate with a high memory window, we use two post treatments to our NZO films, including UV ozone and vacuum annealing, which make memory window improved from 102 to 5×103 and 104, respectively.
Finally, the corresponding mechanism of ZnO thin film based photodetectors is investigated and the device performance improved by Nb doping is also examined.
Keyword: Nb-doped, Zinc oxide (ZnO), resistive random access memory (RRAM), post treatment, photodetector
References
[1] A. S. Kamble, B. B. Sinha, K. Chung, M. G. Gil, V. Burungale, C.-J. Park, J. H. Kim, and P. S. Patil, “Effect of hydroxide anion generating agents on growth and properties of ZnO nanorod arrays,” Electrochimica Acta, vol. 149, pp. 386-393, 2014.
[2] M. Wu, S. Yu, L. He, G. Zhang, D. Ling, and W. Zhang, “Influence of oxygen pressure on the structural, electrical and optical properties of Nb-doped ZnO thin films prepared by pulsed laser deposition,” Applied Surface Science, vol. 292, pp. 219-224, 2014.
[3] A. Chen, “A review of emerging non-volatile memory (NVM) technologies and applications,” Solid-State Electronics, vol. 125, pp. 25-38, 2016.
[4] S. I. Association, “International technology roadmap for semiconductors,” International Technology Roadmap for Semiconductors, 2006.
[5] T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M. Kastner, N. Nagel, M. Moert, and C. Mazure, “FeRAM technology for high density applications,” Microelectronics Reliability, vol. 41, no. 7, pp. 947-950, 2001.
[6] K. Kim, and S. J. Ahn, "Reliability investigations for manufacturable high density PRAM." Reliability Physics Symposium, 2005. Proceedings. 43rd Annual. 2005 IEEE International, pp. 157-162.
[7] 葉林秀, 李佳謀, 徐明豐, and 吳德和, “磁阻式隨機存取記憶體技術的發展-現在與未來,” 物理雙月刊, vol. 26, no. 4, pp. 607-619, 2004.
[8] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, “Recent progress in resistive random access memories: materials, switching mechanisms, and performance,” Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
[9] F. M. Simanjuntak, D. Panda, K.-H. Wei, and T.-Y. Tseng, “Status and prospects of ZnO-based resistive switching memory devices,” Nanoscale Research Letters, vol. 11, no. 1, pp. 368, 2016.
[10] Z.-J. Liu, J.-C. Chou, S.-Y. Wei, J.-Y. Gan, and T.-R. Yew, “Improved resistive switching of textured ZnO thin films grown on Ru electrodes,” IEEE Electron Device Letters, vol. 32, no. 12, pp. 1728-1730, 2011.
[11] W.-Y. Chang, H.-W. Huang, W.-T. Wang, C.-H. Hou, Y.-L. Chueh, and J.-H. He, “High uniformity of resistive switching characteristics in a Cr/ZnO/Pt device,” Journal of The Electrochemical Society, vol. 159, no. 3, pp. G29-G32, 2012.
[12] H. Li, Q. Chen, X. Chen, Q. Mao, J. Xi, and Z. Ji, “Improvement of resistive switching in ZnO film by Ti doping,” Thin Solid Films, vol. 537, pp. 279-284, 2013.
[13] D. Xu, Y. Xiong, M. Tang, B. Zeng, and Y. Xiao, “Bipolar and unipolar resistive switching modes in Pt/Zn0. 99Zr0. 01O/Pt structure for multi-bit resistance random access memory,” Applied Physics Letters, vol. 104, no. 18, pp. 183501, 2014.
[14] D. Xu, Y. Xiong, M. Tang, and B. Zeng, “Coexistence of the bipolar and unipolar resistive switching behaviors in vanadium doped ZnO films,” Journal of Alloys and Compounds, vol. 584, pp. 269-272, 2014.
[15] W.-H. Lee, E.-J. Kim, and S.-M. Yoon, “Effect of Al incorporation amount upon the resistive-switching characteristics for nonvolatile memory devices using Al-doped ZnO semiconductors,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 33, no. 5, pp. 051216, 2015.
[16] H. Xu, D. H. Kim, Z. Xiahou, Y. Li, M. Zhu, B. Lee, and C. Liu, “Effect of Co doping on unipolar resistance switching in Pt/Co: ZnO/Pt structures,” Journal of Alloys and Compounds, vol. 658, pp. 806-812, 2016.
[17] H. Xu, C. Wu, Z. Xiahou, R. Jung, Y. Li, and C. Liu, “Improved resistance switching stability in Fe-doped ZnO thin films through pulsed magnetic field annealing,” Nanoscale Research Letters, vol. 12, no. 1, pp. 176, 2017.
[18] C. Wu, Y. Jia, Y. J. Shin, T. W. Noh, S. C. Chae, and C. Liu, “Effect of internal field on the high resistance state retention of unipolar resistance switching in ferroelectric vanadium doped ZnO,” Applied Physics Letters, vol. 110, no. 14, pp. 143502, 2017.
[19] M. Wang, H. Lv, Q. Liu, Y. Li, H. Xie, S. Long, K. Zhang, X. Liu, H. Sun, and X. Yang, "Study of one dimension thickness scaling on Cu/HfOx/Pt based RRAM device performance." Memory Workshop (IMW), 2012 4th IEEE International, pp. 1-3.
[20] H.-C. Tseng, T.-C. Chang, J.-J. Huang, P.-C. Yang, Y.-T. Chen, F.-Y. Jian, S. Sze, and M.-J. Tsai, “Investigating the improvement of resistive switching trends after post-forming negative bias stress treatment,” Applied Physics Letters, vol. 99, no. 13, pp. 132104, 2011.
[21] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, and S. Seo, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5− x/TaO2− x bilayer structures,” Nature Materials, vol. 10, no. 8, pp. 625, 2011.
[22] S. M. Sze, and K. K. Ng, Physics of semiconductor devices: John wiley & sons, 2006.
[23] R. W. Gurney, and E. U. Condon, “Quantum mechanics and radioactive disintegration,” Physical Review, vol. 33, no. 2, pp. 127, 1929.
[24] D. Ielmini, and Y. Zhang, “Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices,” Journal of Applied Physics, vol. 102, no. 5, pp. 054517, 2007.
[25] C. Child, “Discharge from hot CaO,” Physical Review (Series I), vol. 32, no. 5, pp. 492, 1911.
[26] E. L. Murphy, and R. Good Jr, “Thermionic emission, field emission, and the transition region,” Physical Review, vol. 102, no. 6, pp. 1464, 1956.
[27] J. Frenkel, “On pre-breakdown phenomena in insulators and electronic semi-conductors,” Physical Review, vol. 54, no. 8, pp. 647, 1938.
[28] J. Shao, W. Dong, D. Li, R. Tao, Z. Deng, T. Wang, G. Meng, S. Zhou, and X. Fang, “Metal-semiconductor transition in Nb-doped ZnO thin films prepared by pulsed laser deposition,” Thin Solid Films, vol. 518, no. 18, pp. 5288-5291, 2010.
[29] T. Ghosh, S. Bandopadhyay, K. Roy, A. Maiti, and K. Goswami, “Optical studies on ZnO films prepared by sol‐gel method,” Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, vol. 44, no. 8, pp. 879-882, 2009.
[30] V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G. Lashkarev, B. Svensson, and R. Yakimova, “Structural and morphological properties of ZnO: Ga thin films,” Thin Solid Films, vol. 515, no. 2, pp. 472-476, 2006.
[31] P.-T. Hsieh, Y.-C. Chen, K.-S. Kao, and C.-M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Applied Physics A, vol. 90, no. 2, pp. 317-321, 2008.
[32] W.-Y. Chang, C.-A. Lin, J.-H. He, and T.-B. Wu, “Resistive switching behaviors of ZnO nanorod layers,” Applied Physics Letters, vol. 96, no. 24, pp. 242109, 2010.
[33] S. Lee, H. Na, J. Kim, J. Moon, and H. Sohn, “Anion-Migration-Induced Bipolar Resistance Switching in Electrochemically Deposited TiOx Films,” Journal of The Electrochemical Society, vol. 158, no. 2, pp. H88-H92, 2011.
[34] C.-C. Lin, C.-C. Chen, C.-M. Weng, S.-Y. Chu, C.-S. Hong, and C.-C. Tsai, “Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films,” Journal of Applied Physics, vol. 117, no. 8, pp. 085307, 2015.
[35] M. H. Jones, and S. Jones, “The General Properties of Si, Ge, SiGe, SiO2 and Si3N4,” Va. Semicond, 2002.
[36] W. Mönch, Semiconductor surfaces and interfaces: Springer Science & Business Media, 2013.
[37] C.-C. Lin, Z.-L. Tseng, K.-Y. Lo, C.-Y. Huang, C.-S. Hong, S.-Y. Chu, C.-C. Chang, and C.-J. Wu, “Unipolar resistive switching behavior of Pt/Lix Zn1− xO/Pt resistive random access memory devices controlled by various defect types,” Applied Physics Letters, vol. 101, no. 20, pp. 203501, 2012.
[38] W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, and M.-J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Applied Physics Letters, vol. 92, no. 2, pp. 022110, 2008.
[39] L. Kukreja, A. Das, and P. Misra, “Studies on nonvolatile resistance memory switching in ZnO thin films,” Bulletin of Materials Science, vol. 32, no. 3, pp. 247-252, 2009.
[40] R. D. Clark, “Emerging applications for high k materials in VLSI technology,” Materials, vol. 7, no. 4, pp. 2913-2944, 2014.
[41] H. Fujiwara, M. Kondo, and A. Matsuda, “Interface-layer formation in microcrystalline Si: H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy,” Journal of Applied Physics, vol. 93, no. 5, pp. 2400-2409, 2003.
[42] W. Tang, M. Greiner, Z. Lu, W. Ng, and H. Nam, “Effects of UV-ozone treatment on radio-frequency magnetron sputtered ZnO thin films,” Thin Solid Films, vol. 520, no. 1, pp. 569-573, 2011.
[43] M. Mamat, Z. Khusaimi, M. Musa, M. Malek, and M. Rusop, “Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped zinc oxide nanorod–nanoflake network thin film prepared via ultrasonic-assisted sol–gel and immersion methods,” Sensors and Actuators A: Physical, vol. 171, no. 2, pp. 241-247, 2011.
[44] Y. Yang, W. Guo, J. Qi, J. Zhao, and Y. Zhang, “Self-powered ultraviolet photodetector based on a single Sb-doped ZnO nanobelt,” Applied Physics Letters, vol. 97, no. 22, pp. 223113, 2010.
[45] P. Shewale, N. Lee, S. Lee, K. Kang, and Y. Yu, “Ti doped ZnO thin film based UV photodetector: Fabrication and characterization,” Journal of Alloys and Compounds, vol. 624, pp. 251-257, 2015.
[46] T. Srivastava, G. Bajpai, G. Rathore, S. W. Liu, S. Biring, and S. Sen, “Vanadium substitution: A simple and economic way to improve UV sensing in ZnO,” Journal of Applied Physics, vol. 123, no. 16, pp. 161407, 2018.