簡易檢索 / 詳目顯示

研究生: 陳圳昇
Chen, Tsun-Sheng
論文名稱: CuInSe2奈米粒子合成及其元件製作之研究
A Study on the Synthesis of CuInSe2 Nanoparticles and the Fabrication of CuInSe2 Solar Cell
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 97
中文關鍵詞: 二硒化銅銦太陽能電池溶熱法熱注射法
外文關鍵詞: CuInSe2, Solar Cell, Solvothermal, Hot Injection
相關次數: 點閱:86下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗欲利用非真空製程製作CuInSe2吸收層,實驗之主要目的有二:一為比較兩種方式製作奈米粒子之溫度、時間以及兩者差異,二為藉由後續熱退火之溫度、時間探討,達到吸收層大晶粒且緻密的效果。

    首先利用溶熱法及熱注射法製備奈米粒子,探討各溫度、時間所合成之奈米粒子,以XRD、EDS確認其組成比例以及相成分;並將奈米粒子球磨分散且製作成漿料,抓取分散劑以及黏結劑與粉末比例的參數,而此漿料的製備有助於噴塗、刮刀、旋轉塗佈等製程方式的使用,對於太陽能電池大面積的製作以及軟性基板的應用,都有顯著的幫助;以此漿料旋轉塗佈於鉬電極上,抓取最佳的轉數,並採用高溫爐以及快速升溫爐(RTA)進行退火,分析不同退火溫度、時間、壓力之微結構、相成分以及電性的差別,利用SEM、EDS、XRD、Raman、AFM等儀器分析,找出最佳之參數,期望能達到真空製程製備吸收層大晶粒的效果;並製作成元件,量測其實際轉換的效率為何。

    粉末方面,可發現溶熱法在180℃,24小時以上,熱注射法在285℃,1小時以上,皆可合成出結晶相明顯的黃銅礦結構;退火方面,可發現其增加升溫速率、提高壓力、增加硒粉量以及拉長退火時間皆有助於晶粒之成長,且熱注射法之微結構相較於溶熱法也較平整,PN特性曲線較明顯;元件方面,量得其轉換效率分別為0.821%以及0.675%,對於其串、並聯電阻仍有改善的空間。

    In the research, we attempt to use the non-vacuum process to fabricate the CuInSe2 layer. One object is comparing the nanoparticles which is synthesized by Solvothermal and Hot-Injection method. The other object is to get the large and dense grain.
    First, we synthesize the powders by two methods and analyze the effect of time and temperature. Energy dispersive spectroscopy (EDS) was used to estimate the composition of the powders and thin films. The crystal structure and second phases of the powders and thin films were identified by powder x-ray diffraction (XRD).Then, the powders were dispersed in ethanol or toluene to form the paste. The amount of dispersant and binder were adjusted to form the stably dispersive paste.
    The films were coated by spin coater and annealed by furnace. We changed the temperature, time and pressure to get the large and dense grain. The microstructure was observed by scanning electron microscope (SEM). The roughness was measured by atomic force microscope (AFM).
    Finally, we fabricate the CuInSe2 solar cell. We can get the PN characteristics by the measurement of the dark current. And the efficiency of solvothermal and hot injection methods are 0.821% and 0.675% respectively.

    摘要 ii 第一章 緒論 1 1-1 背景 1 1-2研究動機與目的 4 第二章 文獻回顧與原理 5 2-1太陽能電池工作原理[5] 5 2-2 二硒化銅銦薄膜介紹 11 2-3 水(溶)熱法[13] 14 2-4 熱注射法 16 第三章 實驗方法與步驟 17 3-1 實驗材料 17 3-2 實驗設備 18 3-2.1 磁石攪拌平台 18 3-2.2 薄膜濺鍍系統(Sputtering System) 19 3-2.3 旋轉塗佈機(Spin Coater) 20 3-2.4 烘箱 21 3-2.5 高溫爐 21 3-2.6 快速升溫爐(Rapid Thermal Annealing) 22 3-3 實驗流程 23 3-3.1 清洗基板 23 3-3.2 濺鍍鉬背電極 23 3-3.3 溶熱法製備CuInSe2粉末 24 3-3.4 熱注射法製備CuInSe2粉末 24 3-3.5 沉降實驗 26 3-3.6 旋轉塗佈成膜 27 3-3.7 高溫爐及RTA退火 27 3-3.8 化學水浴法製備硫化鎘 27 3-3.9 製備ZnO以及AZO 28 3-3.10 製備上電極鎳(Ni)層 28 3-4鍍層分析儀器 29 3-4.1 X-Ray粉墨繞射儀 (Powder X-ray Diffraction)[33] 29 3-4.2掃描式電子顯微鏡[34](Scanning Electron Microscope ; SEM) 29 3-4.3能量分散光譜儀[34](Energy Dispersive Spectroscopy;EDS) 31 3-4.4紫外光/可見光光譜儀(UV-VIS-NIR Spectrophotometer) 31 3-4.5拉曼光譜儀[34] 32 3-4.6 α-step 膜厚計 33 3-4.7四點探針[36] 34 3-4.8霍爾量測( Hall Effect Measurement) 35 3-4.9 原子力顯微鏡(Atomic Force Microscopy;AFM) 38 第四章 實驗結果與討論 39 4-1 溶熱法合成CuInSe2粉末 39 4-1.1改變不同溶劑的影響 39 4-1.2 改變不同合成溫度的影響 40 4-1.3 改變不同合成時間的影響 42 4-1.4 溶熱法粉末之UV-VIS分析 44 4-1.5 不同溶劑量(乙二胺)的影響 46 4-1.6 不同溶質量的影響 47 4-2 熱注射法合成CuInSe2粉末 49 4-2.1 改變不同反應溫度的影響 49 4-2.2 改變不同反應時間的影響 52 4-2.3 熱注射法粉末之UV-VIS分析 55 4-3 沉降實驗 58 4-3.1 溶熱法粉末沉降實驗 58 4-3.2 熱注射法粉末沉降實驗 60 4-4 熱注射法粉末所製備試片之熱退火 64 4-4.1 改變不同退火溫度以及時間之特性量測 64 4-4.2 改變退火之不同升溫速度 68 4-4.3 改變不同退火壓力之特性量測 73 4-5 溶熱法粉末所製備試片之熱退火 76 4-6 UV-VIS之分析 79 4-6.1 溶熱法粉末製備之試片UV-VIS分析 79 4-6.2 熱注射法粉末製備之試片UV-VIS分析 80 4-7 霍爾量測(Hall measurement)之分析 81 4-8 拉曼光譜儀( Raman)分析 86 4-9 原子力顯微鏡(AFM)之分析 87 4-10元件製作 90 第五章 結論 93 第六章 文獻 95

    1. 楊宏澤,太陽能發電系統與工程上課講義,2008
    2. 邱秋燕,廖曰淳,楊慕震,黃渼雯,羅一玲,銅銦鎵硒太陽電池-非真空製程技術 發展簡介,工業材料雜誌,264, 2008
    3. Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi , 19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor, Prog. Photovolt: Res. Appl., 16, 235–239,2008
    4. Qijie Guo, Suk Jun Kim, Mahaprasad Kar, William N. Shafarman, Robert W. Birkmire, Eric A. Stach, Rakesh Agrawal, and Hugh W. Hillhouse, Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells, Nano Lett. 8, 2982,2008
    5. 林明獻, 太陽電池入門技術, 2nd ed. ,全華圖書股份有限公司, 台北, 2008
    6. Adolf Goetzberger, Christopher Hebling, Photovoltaic materials, past, present, future, Solar Energy Materials & Solar Cells, 62, 1,2000
    7. L. Kaupmees, M. Altosaar, O. Volubujeva, E. Mellikov, Study of composition reproducibility of electrochemically co-deposited CuInSe2 films onto ITO, Thin Solid Films, 515,5891, 2007
    8. R. Klenk, J. Klaer, R. Scheer, M.Ch. Lux-Steiner, I. Luck, N. Meyer, U. Rqhle, Solar cells based on CuInS2—an overview, Thin Solid Films, 509, 480–481 ,2005
    9. http://www.kson.com.tw/chinese/study_23-6.htm
    10. J. S. Park, Z. Dong, Sungtae Kim, and J. H. Perepezko, CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction, Journal of Applied Physics, 87, 3683 ,2000
    11. N.B. Chaure, J. Young, A.P. Samantilleke and I.M. Dharmadasa, Electrodeposition of p–i–n type CuInSe2 multilayers for photovoltaic applications, Sol. Energy Mater. Sol. Cells, 81, 125 ,2004
    12. N.B. Chaure, A.P. Samantilleke, R.P. Burton, J. Young and I.M. Dharmadasa, Electrodeposition of p+, p, i, n and n+-type copper indium gallium diselenide for development of multilayer thin film solar cells, Thin Solid Films , 472, 212 ,2005
    13. 馬振基,奈米材料科技原理與應用,初版,全華圖書股份有限公司, 台北, 2004
    14. Chung-Han Lee, Chung-Hsien Wu, and Chung-Hsin Lu, Microwave-Assisted Solvothermal Synthesis of Copper Indium Diselenide Powders, J. Am. Ceram. Soc., 93 , 7 , 1879–1883, 2010
    15. Chih-Chung Wu, Ching-Yeh Shiau, Delele Worku Ayele, Wei-Nien Su, Ming-Yao Cheng, Chiu-Yen Chiu, and Bing-Joe Hwang, Rapid Microwave-Enhanced Solvothermal Process for Synthesis of CuInSe2 Particles and Its Morphologic Manipulation,Chem. Mater. , 22, 4185–4190,2010
    16. Li Zhang, Jing Liang, Shengjie Peng, Yunhui Shi, Jun Chen, Solvothermal synthesis and optical characterization of chalcopyrite CuInSe2 microspheres, Materials Chemistry and Physics, 106 , 296–300,2007
    17. Chih-Hui Chang, Jyh-Ming Ting ,Phase, morphology, and dimension control of CIS powders prepared using a solvothermal process, Thin Solid Films, 517, 4174–4178, 2007
    18. Paifeng Luo,Penghan Yu,Ruzhong Zuo,Jiao Jin,Yuankui Ding,Junda Song,Yutong Chen ,The preparation of CuInSe2 films by solvothermal route and non-vacuum spin-coating process, Physica B, 405, 3294–3298, 2010
    19. Huiyu Chen, Seong-Man Yu, Dong-Wook Shin, Ji-Beom Yoo, Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles, Nanoscale Res Lett , 5, 217–223,2010
    20. http://zh.wikipedia.org/wiki/%E4%B9%99%E4%BA%8C%E8%83%BA
    21. Qijie Guo, Suk Jun Kim, Mahaprasad Kar, William N. Shafarman, Robert W. Birkmire, Eric A. Stach, Rakesh Agrawal, and Hugh W. Hillhouse, Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells, Nano Lett., 8, 2982 ,2008
    22. Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn,L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A. , Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal "inks" for printable photovoltaics, J. Am. Chem. Soc., 130, 16770 ,2008
    23. Jiang Tang, Sean Hinds, Shana O. Kelley, and Edward H. Sargent, , Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles, Chem. Mater. , 20, 6906–6910 ,2008
    24. Ming-Yi Chiang, Shu-Hao Chang, Chia-Yu Chen, Fang-Wei Yuan, and Hsing-Yu Tuan, Quaternary CuIn(S1-XSeX)2 Nanocrystals: Facile Heating-Up Synthesis, Band Gap Tuning, and Gram-Scale Production, J. Phys. Chem. C , 115, 1592–1599 ,2011
    25. Daocheng Pan, Xiaolei Wang, Z. Hong Zhou, Wei Chen, Chuanlai Xu, and Yunfeng Lu, Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps, Chem. Mater., 21, 2489–2493,2009
    26. Chivin Sun, Joseph S. Gardner, Gary Long, Cyril Bajracharya, Aaron Thurber, Alex Punnoose, Rene G. Rodriguez, and Joshua J. Pak, Controlled Stoichiometry for Quaternary CuInxGa1-xS2 Chalcopyrite Nanoparticles from Single-Source Precursors via Microwave Irradiation, Chem. Mater. , 22, 2699–2701,2010
    27. D. Braunger, D. Hariskos, G. Bilger, U. Rau and H.W. Schock, Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films, Thin Solid Films, 361, 161,2000
    28. Yi-Han Yang and Yit-Tsong Chen, Solvothermal Preparation and Spectroscopic Characterization of Copper Indium Diselenide Nanorods, J. Phys. Chem. B , 110, 17370-17374,2006
    29. Qijie Guo, Suk Jun Kim, Mahaprasad Kar, William N. Shafarman, Robert W. Birkmire, Eric A. Stach, Rakesh Agrawal, and Hugh W. Hillhouse ,Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells, Nano Lett.,. 8, 9, 2008
    30. Ming-Yi Chiang, Shu-Hao Chang, Chia-Yu Chen, Fang-Wei Yuan, and Hsing-Yu Tuan, Quaternary CuIn(S1-xSex)2 Nanocrystals: Facile Heating-Up Synthesis,Band Gap Tuning, and Gram-Scale Production, J. Phys. Chem. C , 115, 1592–1599,2011
    31. A. Romeo, M.Terheggen, D.Abou-Ras, D.L.Batzner, F.-J.Haug, M.Kalin, D.Rudmann and A. N. Tiwari, Prog. Photovolt: Res. Appl., 12, 97 ,2004
    32. Capasso, F. and G. Maragaritondo, Heterojunction band, discontinuities: Physics and device application, Elsevier science ,1987
    33. 林麗娟, X 光繞射原理及其運用, 工業材料, 86, 101, 1994.
    34. 汪建民,材料分析,1st ed.,中國材料科學學會,新竹,1998
    35. N.B. Chaure, A.P. Samantilleke, R.P. Burton, J. Young and I.M. Dharmadasa, Electrodeposition of p+, p, i, n and n+-type copper indium gallium diselenide for development of multilayer thin film solar cells, Thin Solid Films , 472, 212, 2005
    36. D.L.Simth, Chap10 Film Analysis, Thin Film Deposition, McGraw-Hill, New York, USA, 1995
    37. A. D. L. Humphris, M. J. Miles, and J. K. Hobbs, A mechanical microscope: High-speed atomic force microscopy, Applied Physic Letters, 86, 034106, 2005
    38. A. Gobeaut , L. Laffont , J.-M. Tarascon , L. Parissi , O. Kerrec, Influence of secondary phases during annealing on re-crystallization of CuInSe2 electrodeposited films, Thin Solid Films, 517 , 4436–4442,2009
    39. Masayuki Tanda, Susumu Manaka, Jorge R. Encinas Marin, Katsumi Kushiya, Hideki Sano, Akira Yamada, Photoluminescence Study of CuInSe2 Thin Films Prepared by the Selenization Technique, Jpn. J. Appl. Phys. , 31, 753-755, 1992
    40. 徐有欽, CuInSe2:Sb複晶薄膜太陽能電池之研究, 中山大學碩士論文,1994
    41. Haizheng Zhong, Yi Zhou, Mingfu Ye, Youjun He, Jianping Ye, Chang He, Chunhe Yang and Yongfang Li, Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS2 Nanocrystals, Chem. Mater., 20, 6434–6443, 2008
    42. Wei-Hsiang Hsu, Hsing-I Hsiang, Yu-Lun Chang, Dah-Tong Ray, and Fu-Su Yen, Formation Mechanisms of Cu(In0.7Ga0.3)Se2 Nanocrystallites Synthesized using Hot-Injection and Heating-Up Processes, Journal of the American Ceramic Society,2011

    下載圖示 校內:2016-08-30公開
    校外:2016-08-30公開
    QR CODE