簡易檢索 / 詳目顯示

研究生: 王科霖
Wang, Ko-Lin
論文名稱: 力感阻抗控制應用於電子踏板及車輛防撞策略
Haptic Impedance Control Applied on Electronic Controlled Pedal and Vehicle Collision Avoidance Strategy
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 電子動力踏板力感回饋阻抗控制狀態估測器車輛防撞系統硬體在環觸覺提醒
外文關鍵詞: electronic controlled pedal, haptic feedback, impedance control, Luenberger observer, vehicle collision avoidance system, hardware in the loop
相關次數: 點閱:184下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提供一套系統化阻抗控制設計方法,使伺服系統可依所需機械動態特性,設計控制參數達到理想阻抗控制,並將此方法創新地應用於車用電子動力踏板,可根據使用者所設定的不同阻抗值模擬機械彈簧所提供的回饋力感,提供使用者不同的踩踏特性感受。在本研究的實現架構中,為不增加額外的力量感測器、加速規及轉速計的前提下,以閉迴路估測器架構進行系統狀態之估測,在簡化系統硬體架構下,仍能有效達到阻抗控制目的。以硬體在環(Hardware-in-the-Loop)方式結合真實踏板硬體及以虛擬阻抗概念設計之防撞策略,並由專業CarSim車輛動態模擬軟體,提供虛擬實境之駕駛視角,以虛實整合方式達到人機互動之體驗,以此作為本研究所提出技術的驗證方式。

    The research proposes a design methodology of mechanical impedance control. The servo motion system can be designed as an ideal mechanical dynamic system by adjusting the control parameters systematically. The impedance control framework is fit for the application of human-machine interface because of its haptic feedback character. Hence, in the thesis, by using the novel impedance control method, the electrical power pedal achieves the same dynamics as an original mechanical pedal. Besides, the pedal is multi-functioned and can offer different haptic feedback feeling to different drivers or driving scenarios. With the consideration of practical implementations, the control framework introduces the closed-loop Luenberger observer to reduce the usage of extra sensors, like torque sensors, accelerometers, and tachometers. The collision avoidance strategy is designed by virtual impedance concept; hence, the assistance is incremental and instinctive. Under any driving scenarios, the strategy works and could prevent crash successfully. Hardware-in-the-Loop experiments combine the pedal and the vehicle collision avoidance strategy. The popular vehicle simulation software, CarSim, provides vehicles dynamic model and virtual reality as driving view. The research verifies the system through the integration of virtual software, real hardware, and human manipulation and shows the excellent performance of the pedal and collision avoidance strategy.

    摘要 II ABSTRACT III 誌謝 XVII 目錄 XVIII 圖目錄 XXI 表目錄 XXIV 符號表 XXV 第一章 緒論 1 1.1研究動機 1 1.2研究背景與文獻回顧 2 1.3研究目的 5 1.4本文架構 6 第二章 阻抗控制之電子動力踏板 7 2.1 踏板系統建模與驗證 7 2.1.1 踏板硬體架構 7 2.1.2 系統模型簡化 9 2.1.3 系統參數鑑別 10 2.2阻抗控制正向實現架構 12 2.2.1阻抗控制參數設計方法及流程 14 2.2.2 系統穩定度分析 19 2.3 基於位置感測器及電流資訊之估測器 20 2.3.1 估測器之設計與分析 20 2.3.2 估測器結合阻抗控制避迴路系統設計及分析 24 2.3.3 模型不確定性系統之影響 26 2.4 參考模式控制之阻抗控制架構 28 2.4.1 參考模式阻抗控制架構設計 28 2.5阻抗控制完整架構模擬與驗證 32 2.5.1 正向阻抗控制架構模擬 32 2.5.2 兩不同阻抗控制架構模擬比較 33 第三章 虛擬阻抗式車輛防撞系統 34 3.1 車輛防撞系統架構 34 3.1.1 防撞系統控制架構 34 3.2 防撞策略設計 36 3.2.1 虛擬阻抗概念應用於車輛直線防撞 36 3.2.2 車輛防撞系統啟閉邏輯 36 3.2.3 虛擬阻抗設定 38 3.2.4 完整防撞系統控制策略 41 3.2.5 防撞系統模擬驗證 45 3.3 電子踏板與防撞系統之結合 46 3.3.1 虛擬阻力回饋於踏板阻力 46 第四章 實驗結果分析與討論 49 4.1 實驗硬體架構 49 4.1.1 電子踏板動力驅動模組 51 4.1.2 電子踏板上位控制模組 52 4.1.2 車輛模擬軟體CarSim 53 4.1.3 車輛模型即時運算平台RT-LAB 54 4.2 電子踏板實驗結果驗證 55 4.2.1阻抗控制阻抗可調整實驗 55 4.2.2估測器架構實驗 58 4.2.3 阻抗模型與實驗比較 59 4.3 防撞系統實驗結果驗證 60 4.3.1 加速後滑行情境 60 4.3.2 其他駕駛情境實驗 62 4.4 電子踏板結合防撞系統實驗 64 4.4.1 電子踏板模擬油門結合防撞系統 64 第五章 結論與未來建議 65 5.1結論 65 5.2 未來建議 65 參考文獻 67

    [1] K. A. Brookhuis, D. D. Waard and W. H. Janssen, “Behavioural impacts of Advanced Driver Assistance Systems–an overview.” European Journal of Transport and Infrastructure Research, 2001.
    [2] J. Pohl and J. Ekmark, “Development of a Haptic Intervention System for Unintended Lane Departure.” SAE Technical Paper, 2003.
    [3] https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/safety-assist/aeb-interurban/
    [4] B. Fildes, M. Keall, et al. “Effectiveness of low speed autonomous emergency braking in real-world rear-end crashes.” Accident Analysis & Prevention 81, pp.24-29, 2015.
    [5] C. K. Alexander and M. no Sadiku , “Fundamentals of Electric Circuits 3”, McGraw-Hill: pp.387–389, 2006.
    [6] N. Hogan, “Impedance control: an approach to manipulation. Part I: Theory, Part II: Implementation, Part III: Application .” Transactions of ASME, Journal of Dynamic System, Measurement, and Control, vol.107, pp.1-23, 1985.
    [7] P. Bachman1 and A. Milecki , “MR haptic joystick in control of virtual servo drive.” Journal of Physics: Conference Series, Volume 149, 2009.
    [8] M. Ouhyoung, W.-N Tsai, M.-C Tsai, J.-R Wu, C.-H Huang, and T.-J Yang, “A low-cost force feedback joystick and its use in PC video games.” IEEE Transactions on Consumer Electronic, vol. 41, pp.787-794, 1995.
    [9] C.-P Kuan and K.-Y. Young, “VR-Based Teleoperation for Robot Compliance Control.” Journal of Intelligent & Robotic Systems, vol. 30, pp. 377-398, 2001.
    [10] R. J. Adams, and B. Hannaford. “Control law design for haptic interfaces to virtual reality.” IEEE Transactions on control systems technology, 2002.
    [11] H. Schuette, and P. Waeltermann, “Hardware-in-the-Loop Testing of Vehicle Dynamics Controllers – A Technical Survey .” SAE Technical Paper, 2005.
    [12] A. Takemoto, T. Miyoshi, and K. Terashima. “Operation assist control system of rotary crane using proposed haptic joystick as man-machine interface.” Robot and Human Interactive Communication, IEEE, 2004.
    [13] H. Kazerooni and J. Guo, “Human extenders” Transactions-American Society of Mechanical Engineers Journal of Dynamic Systems Measurement and Control, pp.281-281, 1993.
    [14] J. An, and D.-S Kwon. “Haptic experimentation on a hybrid active/passive force feedback device.” Robotics and Automation, IEEE International Conference, 2002.
    [15] http://www.aa1car.com/library/throttle-by-wire.htm
    [16] http://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/ emergency_brake.html
    [17] M. P. Hennessey, C. Shankwitz, and M. Donath. “Sensor-based virtual bumpers for collision avoidance: configuration issues.” Photonics East'95. International Society for Optics and Photonics, 1995.
    [18] G. Ellis “Observers in control systems: a practical guide” Academic press, 2002.
    [19] L. Ljung, “System identification toolbox” Math Works, 1992.
    [20] P. B. Schmidt, and D. L. Robert “Design principles and implementation of acceleration feedback to improve performance of dc drives.” IEEE Transactions on Industry Applications vol. 28 pp.594-599, 1992
    [21] G. F. Franklin, et al. “Feedback control of dynamic systems.” vol. 3. Reading, MA: Addison-Wesley, 1994.
    [22] E. J. Routh, “A treatise on the stability of a given state of motion: particularly steady motion.” Macmillan and Company, 1877.
    [23] D.Y. Ohm, “Analysis of PID and PDF compensators for motion control systems.”Industry Applications Society Annual Meeting, 1994.
    [24] S. Butterworth “On the theory of filter amplifiers.” Wireless Engineer, pp.536-541, 1930.
    [25] http://www.nxp.com/products/rf/radar-systems:MITERWAVEICS
    [26] J. R. Sayer “Intelligent cruise control-issues for consideration.” SAE Technical Paper, 1996.
    [27] https://www.travelers.com/resources/auto/travel/3-second-rule-for-safe-following-distance.aspx
    [28] http://www.smartmotorist.com/traffic-and-safety-guideline/maintain-a-safe-following-distance-the-3-second-rule.html
    [29] P. Greibe, “Braking distance, friction and behavior.” Trafitec, Scion-DTU, 2007.
    [30] P.-Wen Hsueh, et al. “Luenberger observer-based impedance control of linear servo motor for a desired haptic system.” Automatic Control Conference (CACS) IEEE, 2013.
    [31] http://www.cybernet-ap.com.tw/zh.php?m=434&t=95
    [32] R. Rajamani, “Vehicle dynamics and control” Springer Science & Business Media, 2011.
    [33] 胡家勝,阻抗控制於力覺回饋控制應用之設計與實現,碩士論文,國立成功大學機械工程學系,2003年

    無法下載圖示 校內:2022-07-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE