簡易檢索 / 詳目顯示

研究生: 劉建宏
Liu, Jian-Hong
論文名稱: 海流發電系統之特性分析
Characteristic Analysis of Marine-Current Power Generation Systems
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 308
中文關鍵詞: 海流渦輪機海流感應發電機模糊控制器
外文關鍵詞: marine-current induction generator (MCIG), power-electronic converters (PECs), fuzzy logic control(FLC)., marine-current turbine (MCT)
相關次數: 點閱:91下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以四種海流發電架構,分別為:海流感應發電機直接併聯市電、海流感應發電機經電力電子轉換器併聯市電、海流感應發電機自激發電連接獨立負載以及海流感應發電機自激發電經電力電子轉換器連接獨立負載,利用此四種海流發電架構研究系統之穩定度、穩態及動態響應。在三相平衡系統下採用交直軸等效電路模型,分別建立海流流速、海流渦輪機、感應發電機以及整流-換流模組等之模型,並推導其數學模型來完成整體動態方程式。在穩態方面,則分別對不同海流流速、控制命令值以及相關參數變動對系統特性之影響做詳細討論。在動態研究方面,完成變動流速、市電端三相短路故障、變動控制命令值、負載切換、轉矩干擾以及相關參數變動之模擬。最後在轉矩干擾下,利用模糊控制器來改善直流鏈電壓之暫態響應。

    This thesis presents stability analysis, steady-state results, and dynamic performance of marine-current power generation systems under four configurations, i.e., marine-current induction generator (MCIG) directly connected to the grid, MCIG connected to the gird through power-electronic converters (PECs), marine-current self-excited induction generator (MCSEIG) directly connected to isolated loads, and MCSEIG connected to isolated loads through PECs. The d-q axis equivalent-circuit model is employed to establish the models for marine-current turbine (MCT), MCIG, and PECs to derive the complete dynamic equations of the studied system under three-phase balanced loading conditions. Steady-state characteristics of the studied system under different marine-current speeds, various control commands, and various parameters are examined. Dynamic simulations of the studied system subject to variable values of marine-current speed, voltage drop at utility grid, control command, loads, torque disturbance, and system paramerters are also carried out. Also, fuzzy logic control(FLC) controller is employed to improve the dynamic response of dclink voltage under torgue disturbance.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 X 圖目錄 XIV 符 號 說 明 XXI 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 3 1-3 相關文獻回顧 7 1-4 研究內容概述 12 第二章 系統數學模型 14 2-1 前言 14 2-2 海流數學模型之建立 14 2-3 海流渦輪機數學模型之建立 20 2-4 感應發電機之數學模型 26 2-5 海流發電之系統數學模型 29 2-5-1 海流感應發電機直接連接市電之數學模型 29 2-5-2 海流感應發電機經由電力電子轉換器連接市 電之數學模型 30 2-5-3 海流感應發電機自激發電連接獨立負載之數 學模型 32 2-5-4 海流感應發電機自激發電經由電力電子轉換 器連接獨立負載之數學模型 34 2-6 電力電子轉換器控制方法 37 2-6-1 電力電子轉換器連接市電之控制方法 37 2-6-2 自激發電連接電力電子轉換器再連接獨立負 載之控制方法 41 2-7 海流感應機發電機數學模型之整理 42 第三章 海流發電機之穩態分析 53 3-1 前言 53 3-2 海流感應發電機直接併聯市電之穩態分析 53 3-2-1 變動流速之穩態分析 54 3-2-2 市電端電壓變動之穩態分析 61 3-2-3 傳輸線變動之穩態分析 65 3-2-4 補償電容變動之穩態分析 69 3-3 海流感應發電機經由電力電子轉換器併聯市電之穩 態分析 73 3-3-1 不含實功率控制之變動海流穩態分析 74 3-3-2 不含實功率控制之變動直流鏈電壓穩態分析 83 3-3-3 加入實功率控制之動態流速穩態分析 89 3-3-4 加入實功率控制之市電端電壓變動穩態分析 97 3-3-5 加入實功率控制之轉換器側傳輸線變動穩態分析 105 3-3-6 加入實功率控制之換流器側傳輸線變動穩態分析 111 3-3-7 加入實功率控制之補償電容變動穩態分析 117 3-3-8 加入實功率控制之實功率參考值變動穩態分析 123 3-3-9 加入實功率控制之直流鏈電壓參考值變動穩態 分析 129 3-4 海流感應發電機自激發電連接獨立負載之穩態分析 135 3-4-1 變動海流流速之穩態分析 136 3-4-2 變動負載之穩態分析 140 3-4-3 變動傳輸線之穩態分析 143 3-4-4 變動自激電容之穩態分析 146 3-5 海流感應發電機自激發電經由電力電子轉換器連接獨 立負載之穩態分析 149 3-5-1 變動海流流速之穩態分析 150 3-5-2 變動負載之穩態分析 156 3-5-3 變動轉換器側傳輸線之穩態分析 160 3-5-4 變動換流器側傳輸線之穩態分析 164 3-5-5 變動自激電容之穩態分析 168 3-5-6 變動直流鏈電壓參考值之穩態分析 173 第四章 海流感應發電機之動態分析 177 4-1 前言 177 4-2 海流發電機直接併聯市電之動態分析 178 4-2-1 動態海流流速之分析 178 4-2-2 市電端三相短路故障之分析 182 4-2-3 傳輸線跳線之分析 186 4-2-4 補償電容切換之分析 189 4-2-5 轉矩干擾之分析 193 4-3 海流發電機經電力電子轉換器併聯市電之動態分析 197 4-3-1 未加入實功率控制之動態海流流速分析 197 4-3-2 未加入實功率控制之直流鏈電壓步階改變動態 分析 203 4-3-3 加入實功率控制之動態海流流速分析 208 4-3-4 加入實功率控制之實功率步階改變動態分析 214 4-3-5 加入實功率控制之傳輸線跳線分析 219 4-3-6 加入實功率控制之補償電容切換分析 224 4-3-7 加入實功率控制之轉矩干擾分析 229 4-3-8 加入實功率控制之市電端電壓驟降分析 234 4-3-9加入實功率控制之直流鏈電壓步階改變動態分析 239 4-4 海流發電機自激發電連接獨立負載型之動態分析 244 4-4-1 動態海流流速之動態分析 244 4-4-2 負載端三相短路故障之分析 247 4-4-3 傳輸線跳線之分析 249 4-4-4 自激電容切換之分析 251 4-4-5 轉矩干擾之分析 253 4-4-6 負載切換之分析 255 4-5 海流發電機自激發電經電力電子轉換器連接獨立負 載之動態分析 257 4-5-1 動態海流流速分析 257 4-5-2 負載切換之動態分析 263 4-5-3 自激電容切換之動態分析 267 4-5-4 直流鏈電壓步階改變之動態分析 271 4-5-5 傳輸線跳線之分析 275 4-5-6 轉矩干擾之分析 279 第五章 模糊控制器 283 5-1 前言 283 5-2 控制系統模型 283 5-3 模糊控制器設計方法 285 5-4 不含實功率控制控制之轉矩干擾之動態模擬 290 5-5 含實功率控制控制之轉矩干擾之動態模擬 294 第六章 結論與未來研究方向 298 6-1 結論 298 6-2 未來研究方向 303 參考文獻 304 作者簡介 308

    [1] I. G. Bryden, S. Naik, P. Fraenkel, and C. R. Bullen, “Matching tidal current plants to local flow conditions,” Energy, vol. 23, no. 9, September 1998, pp. 699-709.
    [2] A. S. Bahaj and L. Myers, “Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands) using marine current energy converters,” Renewable Energy, vol. 29, no. 12, October 2004, pp. 1931-1945.
    [3] L. Myers and A. S. Bahaj, “Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race,” Renewable Energy, vol. 30, no. 11, September 2005, pp. 1713-1731.
    [4] I. G. Bryden and S. J. Couch, “ME1—marine energy extraction: tidal resource analysis,” Renewable Energy, vol. 31, no. 2, February 2006, pp. 133-139.
    [5] W. M. J. Batten, A. S. Bahaj, A. F. Molland, and J. R. Chaplin, “The prediction of the hydrodynamic performance of marine current turbines,” Renewable Energy, vol. 33, no. 5, May 2008, pp. 1085-1096.
    [6] A. S. Bahaj, A. F. Molland, J. R. Chaplin, and W. M. J. Batten, “Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank,” Renewable Energy, vol. 32, no. 3, March 2007, pp. 407-426.
    [7] A. S. Bahaj, W. M. J. Batten, and G. Mccann, “Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines,” Renewable Energy, vol. 32, no. 15, December 2007, pp. 2479-2490.
    [8] L. Xu, L. Yao, and C. Sasse, “Grid integration of large DFIG-based wind farms using VSC transmission,” IEEE Transactions on Power Systems, vol. 22, no. 3, August 2007, pp. 976-984.
    [9] M. G. Simoes, B. K. Bose, and R. J. Spiegel, “Fuzzy logic based intelligent control of a variable speed cage machine wind generation system,” IEEE Transactions on Power Electronics, vol. 12, no. 1, January 1997, pp. 87-95.
    [10] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-102, no. 12, December 1983, pp. 3791-3795.
    [11] W. Lu and B. T. Ooi, “Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source HVDC,” IEEE Transactions on Power Delivery, vol. 18, no. 1, January 2003, pp. 201-206.
    [12] A. Miller, E. Muljadi, and D. S. Zinger, “A variable speed wind turbine power control,” IEEE Transactions on Energy Conversion, vol. 12, no. 2, June 1997, pp. 181-186.
    [13] W. Lu and B. T. Ooi, “Multi-terminal LVDC system for optimal acquisition of power in wind-farm using induction generators,” IEEE Electronics Specialists Conference, vol. 1, June 2001, pp. 210-215.
    [14] T. Ahemed, K. Nishida, and M. Nakaoka, “Advanced control of PWM converter with variable-speed induction generator,” IEEE Transactions on Industry Applications, vol. 42, no. 4, July/August 2006, pp. 934-945.
    [15] S. E. B. Elghali, R. Balme, K. L. Saux, M. E. H. Benbouzid, J. F. Charpentier, and F. Hauville, “A simulation model for the evaluation of the electrical power potential harnessed by a marine current turbine,” IEEE Transactions on Oceanic Engineering, vol. 32, no. 4, October 2007, pp. 786-797.
    [16] R. Griinbanm, P. Halvarsson, D. Larsson, and P. R. Jones, “Conditioning of power grids serving offshore wind farms based on asynchronous generator,” Power Electronics, Machine and Drives Conference, vol. 1, March/April 2004, pp. 34-39.

    [17] J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind parks in power system,” IEEE Power Tech conference, June 2003.
    [18] C. I. Chai, W. J. Lee, P. Fuangfoo, M. Williams, and J. R. Liao, “System impact study for the interconnection of wind generation and utility system,” IEEE Transactions on Industry Applications, vo1. 41, no. 1, February 2005, pp. 163-168.
    [19] D. J. Trudnowski, A. Gentile, J. M. Khan, and E. M. Petritz, “Fixed-speed wind-generator and wind-park modeling for transient stability studies,” IEEE Transactions on Power Systems, vol. 19, no. 4, November 2004, pp. 1911-1917.
    [20] B. V. Perumal and K. Chatterjee, “Voltage and frequency control of a stand alone brushless wind electric generation using generalized impedance controller,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, June 2008, pp. 632-641.
    [21] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994.
    [22] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press Ames, 1977.
    [23] 劉書瑋,市電併聯型風力感應發電機之研究,國立成功大學電機工程學系碩士論文,民國九十四年六月。
    [24] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,民國九十五年六月。
    [25] 黃偉,虛功補償元件應用於風場之特性分析,國立成功大學電 機工程學系碩士論文,民國九十六年六月。
    [26] 黃厚生、江青瓚、廖經欣,台灣近海海流發電機最佳參數選擇之探討,中華民國第二十七屆電力工程研討會,民國95年12月22-23日。
    [27] 陳維新,海流能(marine current energy)。
    [28] http://en.wikipedia.org/wiki/Darrieus_wind_turbine
    [29] http://www.gcktechnology.com/GCK/pg2.html
    [30] http://www.marineturbines.com/
    [31] George Marsh, “Tidal turbines harness the power of the sea,” Reinforced Plastics, vol. 48, no. 6, June 2004, pp. 44-47.

    下載圖示 校內:2011-08-29公開
    校外:2013-08-29公開
    QR CODE