簡易檢索 / 詳目顯示

研究生: 楊大成
Yang, Ta-Cheng
論文名稱: 應用可適隨機搜尋法率定SWAN波浪模式之研究
Application of adaptive random search for calibrating the SWAN wave model
指導教授: 高家俊
Kao, Chia Chuen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 60
中文關鍵詞: 颱風波浪率定可適隨機搜尋法SWAN 波浪模式
外文關鍵詞: Typhoon waves, Calibration, Adaptive random search, SWAN wave model
相關次數: 點閱:92下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 颱風為每年影響台灣最嚴重之天氣型態,平均每年約有3~4個颱風侵襲台灣,期間所產生之颱風波浪不僅對海岸工程、海事結構物造成傷害也嚴重威脅濱海居民之生命財產安全。因此,研究長期颱風波候變遷的趨勢可作為日後海岸保護、政策決策及工程設計時之參考。
    由於有限的觀測資料使然,透過輸入風場於波浪模式進而模擬長期颱風波浪成為一可行之方法,本研究利用德國HZG研究中心所提供之高解析風場輸入SWAN波浪模式,能較合理地描述颱風於時間及空間上變化快速之特性。本研究初步對過去十年間之第二路徑颱風所造成之颱風波浪( )做率定與驗證。
    本研究首先透過敏感度分析決定模式率定之參數,結果顯示 為主要影響模式輸出結果之參數,底床摩擦係數以及碎波消散係數並沒有顯著的影響。本研究進一步利用可適隨機搜尋法配合OBJ函數搜尋 之最佳參數值,使模式結果盡可能與實測資料一致。以碧利斯和蔷密颱風驗證最佳參數值之適用性並與龍洞、蘇澳與花蓮浮標所測得之波浪資訊做比較,結果顯示模式率定後之模擬結果明顯改善示性波高之模擬,但在平均週期的模擬上則略差於率定之前。
    由於波浪可由許多不同頻率的組成波疊加組合而成,海浪的總能量由更組成波提供。透過對波譜的分析可了解波浪能量相對於組成波頻率的分佈。因此本研究進一步討論率定前後是否改善模式在波譜上的模擬結果,在定性以及定量的分析上顯示模式率定後在波譜的模擬上與實測更為貼近。

    Typhoons play a major role in engineering and environmental problems. Statistical number from Central Weather Bureau (CWB) of Taiwan shows that there are in average 3.5 typhoons approaching Taiwan per year. It is often subject to severe sea states induced by typhoon waves, resulting in terrible losses of human life and property in the coastal area of Taiwan. Therefore, analysis of typhoon waves and long-term changes of typhoon wave climate are of great importance to the operation and safety of shipping, offshore industries, and coastal development.
    Our long-term goal is to investigate variability and trends of typhoon waves over past 60 years. Unfortunately, the long observational records are hardly available. Therefore, hindcasts by the wave models become a common tool to complement the limited observational record.
    In this study, we used HZG high-resolution wind field to drive the SWAN wave model. Before the model can be applied to the specific region, we have to calibrate the parameters of the wave model. First of all, we selected the 3 most important parameters from the source term of the SWAN wave model and subjected them to sensitivity analysis to determine which parameter is the most sensitive. The result showed that is the most sensitive parameter. After sensitivity, we adopted adaptive random search (ARS) to find the optimal value of the for improving the simulation of typhoon waves ( ). The accuracy of simulations of significant wave height using calibrated value of in the SWAN wave model was greatly improved over reference simulations at the Longdong, Suao and Hualien buoy station. However, the accuracy of mean period was slightly underestimated over reference simulations.
    Even though significant wave heights and mean periods are common parameters to evaluate spectral wave models, the SWAN wave model predicts the full wave spectrum; therefore, a simplified validation based on integrated parameters can be misleading. This study provides an analysis of predicted wave spectra for the two verification typhoons. The results showed that the accuracy of wave energy was also improved greatly over reference simulations.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 1 1-3 文獻回顧 2 1-3-1 長期波候變遷 2 1-3-2 模式參數率定 3 1-4 本文架構 5 第二章 模擬颱風波浪之數值理論 6 2-1 SWAN數值波浪模式 6 2-1-1 波浪作用力平衡方程式 7 2-1-2 率定經驗參數選取 8 2-2 重建高解析風場資料-HZG風場 14 2-3 模擬颱風案例 15 第三章 SWAN波浪模式之參數率定與驗證 20 3-1 模式計算範圍與設定 20 3-2 參數敏感度分析 22 3-2-1 分析步驟 22 3-2-2 參數敏感度分析結果 24 3-3應用可適隨機搜尋法搜尋參數最佳值 25 3-3-1 可適隨機搜尋法計算程序 25 3-3-2 參數最佳值的決定 26 3-4 颱風波浪模擬之驗證 27 第四章 波譜模擬分析 41 4-1 一維波譜模擬結果 41 4-2 波譜時序列誤差分析 49 第五章 結論與建議 54 5-1 結論 54 5-2 建議 55 參考文獻 56 自述 60

    1. Alves J.H.G.M., and Banner M.L., “Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves”, J phys Oceanogr, Vol. 36, pp. 1274-98 (2003).
    2. Booij N., Ris R.C., and Holthuijsen L.H., “A third generation wave model for coastal region. 1. Mosel description and validation”, J Geophys Res, Vol. 104, pp. 7649-66 (1999).
    3. Bacon S., Carter D.J.T., “Wave climate changes in the north Atlantic and North Sea”, Int J Climatol, Vol. 11, pp. 545–558 (1991).
    4. Bauer E., “Interannual changes of the ocean wave variability in the North Atlantic and in the North Sea”, Climate Res, Vol. 18, pp. 63–69 (2001).
    5. Cox A., Swail V., “A global wave hindcast over the period 1958–1997: validation and climate assessment”, J Geophys Res, Vol. 106, pp. 2313–2329 (2001).
    6. Caires S., Sterl A., “100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data”, J Climate, Vol. 18, pp. 1032–1048 (2005).
    7. Dodet G., Bertin X., Taborda R., “Wave climate variability in the North-East Atlantic Ocean over the last six decades”, Ocean modeling, Vol. 31, pp. 120-131 (2010).
    8. Feser F., Weisse R., von Storch H., “Multi-decadal atmospheric modeling for Europe yields multi-purpose data”, Eos Transactions, Vol. 82, pp. 305-310 (2001).
    9. Holthuisen L., Ris R., Booik N., and Cecchi E., “Swell and whitecapping a numerical experiment”, ASCE, Waves 2001, Vol. 1, pp. 346-354(2001).

    10. Hasselmann K., Barnett T.P., Bouws E., Carlson H., Cartwright D.E., Enke K., Ewing J.A., Gienapp H., Hasselmann D.E., Kruseman P., Meerburg A., Müller P., Olbers D.J., Richter K., Sell W. and Walden H., “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)”, Dtsch Hydrogr Z, Suppl 12, A8 (1973).
    11. Janssen P.A.E.M., “On the effect of gustiness on wave growth”, KNMI, Afdeling Oceanografisch Onderzoek memo, 00-8618. De Bilt, Vol. 17 (1986).
    12. Janssen, “Wave induced stress and the drag of air flow over sea waves”, J Phys Oceanogr, Vol. 19, PP. 745-754 (1989).
    13. Janssen, “Quasi-linear theory of wind-wave generation applied to wave forecasting”, J Phys Oceanogr, Vol. 21, pp. 1631-1642 (1991).
    14. Liu P.C., “A representation for the frequency spectrum of the Wind-Generated Waves”, Ocean Eng, Vol. 10, No. 6, pp. 429–441 (1983).
    15. Lee B.C., Fan Y.M., Chuang Laurence Z.H. and Kao C.C., “Parametric Sensitivity Analysis of the WAVEWATCH III Model”, Terr Atmos Ocean Sci, Vol. 20, pp. 425-432 (2009).
    16. Malin V.K., Kudryavtsev V.N., “Coupled sea surface-atmosphere model 1. Wind over waves coupling”, J Geophys. Res, Vol. 104, pp. 7613-7623(1999).
    17. Pires S.A., “Spectral Description of the West Coast of Portugal (empirical approach)”, MSc Thesis, Technical University of Lisbon, Instituto Superior Técnico (1988).
    18. Rogers W.E., Hwang P.A., and Wang D.W., “Investigation of wave growth and decay in the SWAN model: three regional-scale applications”, J phys Oceanogr, Vol. 33, pp. 366-389 (2002).

    19. Sterl A., Komen G., Cotton P., “Fifteen years of global wave hindcasts using winds from the European Centre for Medium–Range Weather Forecasts reanalysis: validating the reanalyzed winds and assessing wave climate”, J Geophys Res, Vol. 103, pp. 5477–5492 (1998).
    20. Sterl A., Caires S., 2005. “Climatology, variability and extreme of ocean waves-The web-based KNMI/ERA-40 wave atlas”, Int J Climatol, Vol. 25, pp. 963–977 (2005).
    21. Törn, A. and Zilinskas A., “Global optimization”, Springer Verlag, New York, pp. 255 (1989).
    22. Tolman and Chalikov D., “Source terms in a third-generation wind wave model”, J phy Oceanogr, Vol. 26, pp. 2497-2518 (1996).
    23. The WASA-Group., “Changing waves and storms in the Northeast Atlantic?”, Bull Am Meteorol Soc, Vol. 79, pp. 741–760 (1998).
    24. von Storch H., Langenberg H., Feser F., “A spectral nudging technique for dynamical downscaling purposes”, Mon Weather Rev, Vol. 128, pp.3664–3673 (2000).
    25. Van der Westhuysen A.J., Zijlema M., and Battjes J.A., “Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water”, Coast. Eng, Vol. 54, pp. 151-170 (2007).
    26. Walden H., Hogben N., Burkhart M.D., Dorrestein R., Warnsink W.H., Yamanouchi Y., “Long Term Variability”, In: 4th International Ship Structures Congress, Tokyo, Report of Committee, Vol. 1, pp. 49–59 (1970).
    27. Woolf D.K., Cotton P.D., Challenor P.G., “Variability and predictability of the North Atlantic wave climate”, J Geophys Res, Vol. 107, No. 10, pp. 9–23 (2002).

    28. Weisse R. and Günther H., 2007. “Wave Climate and Long-term Changes for the Southern North Sea Obtained form a High-resolution Hindcast 1958-2002”, Ocean Dynamics, Vol. 57, No. 3, pp. 161-172 (2007).

    下載圖示 校內:立即公開
    校外:2012-08-25公開
    QR CODE