簡易檢索 / 詳目顯示

研究生: 廖學科
Liao, Hsueh-Ko
論文名稱: 應用於燃料電池與鋰電池複合電能系統之交錯式降/昇壓轉換器
Interleaved Buck/Boost Converters for Fuel Cell and Li-ion Battery Hybrid Energy System
指導教授: 梁從主
Liang, Tsorng-Juu
陳建富
Chen, Jiann-Fuh
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 102
中文關鍵詞: 質子交換膜燃料電池交錯式控制技術降/昇壓轉換器
外文關鍵詞: Proton exchange membrane fuel cells, interleaved control techniques, buck/boost converter
相關次數: 點閱:94下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 質子交換膜燃料電池已逐漸應用於電動載具中,由於質子交換膜燃料電池無法提供瞬間較大的電流,因此常需配合鋰電池及超級電容以提供較大的瞬時電流,鋰電池又可於質子交換膜燃料電池功率不足或無功率輸出時,提供額外的能量給負載。本論文提出兩種使用交錯式控制技術之降/昇壓式直流-直流轉換器電路,應用於燃料電池與鋰電池複合電能系統。使用交錯式控制技術之轉換器,相較於傳統單一轉換器,具有較低的輸入及輸出電容漣波電流,以提升複合電能系統的效能,亦可減少輸入與輸出的電容器值。論文首先提出一非反相降/昇壓型轉換器電路,此電路可以將燃料電池能量轉換至直流匯流排並供應能量給負載。所提出轉換器是整合兩個非反相降/昇壓轉換器,此轉換器可解決傳統反相降/昇壓型轉換器共地問題,並可以減少使用開關及二極體元件之數量。再利用交錯控制技術而成,以減低輸出電流之漣波。文中首先詳細討論所提錯相控制非反相降/昇壓轉換器的操作原理及穩態電路分析,最後並以電路實作以驗證電路分析之可行性,轉換器的輸入電壓為24~45 V,輸出為28 V/800W,並使用同步整流技術來提昇轉換器之整體效率。
    本文亦同時提出三埠非反相降/昇壓式直流-直流轉換器,此電路主要是作為複合電能系統之輔助電源,非反相降/昇壓式直流-直流轉換器,此電路將電路中的兩個電感整合為一耦合電感,因此可由燃料電池的能量經由轉換器對鋰電池充電,亦可由電池提供能量至直流匯流排。並利用能量控制之觀念,控制燃料電池提供給直流匯流排與鋰電池能量及電池的放電能量。當燃料電池的供電能量不足時,可將鋰電池組的能量提供至直流匯流排上;當燃料電池可提供足夠的能量給負載時,可依據鋰電池的電量對電池作適當的充電。文中討論並分析所提三埠非反相降/昇壓式直流-直流轉換器的操作原理及穩態電路分析,並以實作電路驗證電路分析之可行性,燃料電池的電壓為24~45 V,鋰電池的電壓為24 V/10 Ah。再利用數位信號處理晶片(dsPIC30F4011)作為電能管理之核心,藉以管理本文所提的兩種轉換器,控制複合電能系統轉換器之間電力潮流,以調整質子交換膜燃料電池、鋰電池組、及負載間的能量,驗證與實現整體系統的效能。

    Proton exchange membrane (PEM) fuel cells (FCs) are widely used in electrical vehicle systems. Since the PEM FCs can not provide very high levels of instant current to the load, lithium batteries and supercapacitors are usually used in combination with the FCs to provide higher instant power to the load. In addition, the lithium battery and supercapacitor can also supply extra energy to the load when the PEM FCs can not provide enough. In this dissertation, two types of buck/boost DC - DC converters with interleaved control techniques are proposed for the PEM FC, lithium battery, and supercapacitor hybrid energy system. The ripple current on the input and output can be reduced by using interleaved control, compared with the traditional single converter topology. Thus, the overall performance of the interleaved control can be improved with a smaller-sized capacitor. The proposed novel non-inverting buck/boost converter is used to transfer the PEM FC energy to the DC-bus and also provide energy to the load. The common ground issue can be solved by the proposed non-inverting buck/boost converter. In addition, the output power can be increased with the interleaved control technique. The counts of power switches and diodes can also be decreased by the integrated converter. The operating principles and steady-state analysis of the proposed non-inverting buck/boost converter are discussed in detail. Finally, a laboratory prototype is implemented to verify the performance of the proposed converter; the FC output voltage is 24~45 V and the output is 28 V/800 W. Synchronous rectifiers are also adopted to improve the system efficiency.
    This dissertation also proposes a three-ports interleaved buck/boost DC - DC converter, which transfers energy from the FC to the lithium battery, and from the lithium battery to the DC-bus voltage by using an integrated coupled inductor. A digital signal processor (dsPIC30F4011) is also adopted to control the power flow. When the FC can not provide sufficient energy to the load, the lithium battery energy and supercapacitor will supply extra to the load. When the FC supplies sufficient energy, the digital signal processor (DSP) can also control the proposed three-ports converter to charge the battery appropriately. The operating principles and steady-state analysis of the proposed three ports non-inverting buck/boost converter are discussed in detail. A laboratory prototype is implemented with an FC output voltage of 24~45 V and battery output of 24 V/ 10Ah. The DSP is used to control the proposed two converters to manage the energy among the FC, lithium battery, and load. A laboratory prototype is implemented to verify the effectiveness of the proposed converters.

    TABLE OF CONTENTS ..........I LIST OF FIGURES........... III LIST OF TABLES........... VII NOMENCLATURE .......... VIII CHAPTER 1 INTRODUCTION ......... 1 1.1 Background ........... 1 1.2 Characteristics of PEM Fuel Cell........ 2 1.3 Motivation and objectives of the research ...... 6 1.4 Outline of this dissertation ........ 8 CHAPTER 2 REVIEW OF CONVERTER FOR HYBRID SYSTEM.. 10 2.1 Fuel cell and Li-ion battery literature survey.... 10 2.1.1 Fuel cell .......... 10 2.1.2 Li-ion battery.......... 14 2.2 Converter for hybrid system literature survey .... 15 2.3 Bidirectional converter for hybrid system literature survey ... 16 CHAPTER 3 NON-INVERTERED BUCK/BOOST CONVERTER WITH INTERLEAVED CONTROL TECHNIQUE. 20 3.1 Introduction ........... 20 3.2 Operational principles......... 22 3.3 Steady-state analysis........ 25 3.3.1 DC voltage and current gain ...... 26 3.3.2 Device stresses ......... 27 3.3.3 Boundary condition between CCM and DCM... 27 3.3.4 Ripple voltage and current ....... 28 3.3.5 Power losses and efficiency ....... 28 3.4 Experimental results of non-inverting buck-boost converter with interleaved control technique ....... 32 3.4.1 Design Example ......... 32 3.4.2 Experimental Results ....... 37 3.5 Summary ........... 49 CHAPTER 4 THREE PORT NON-INVERTERED INTERLEAVED BUCK/BOOST CONVERTER...... 51 4.1 Operational principles analysis for proposed converter ... 52 4.1.1 Step-down mode (charging mode) ..... 53 4.1.2 Step-up mode (discharging mode) ..... 62 4.2 Steady-state analysis........ 73 4.2.1 Gain analysis for step-down mode..... 73 4.2.2 Gain analysis for step-up mode...... 74 4.3 Hybrid energy power-supply system for management.... 76 4.3.1 Normal power-supply mode....... 77 4.3.2 The lithium-ion battery-charging mode .... 77 4.3.3 The PEM fuel cell and battery-supply mode.... 78 4.3.4 The lithium-ion battery power supply mode .... 79 4.3.5 System-halt mode .........79 4.4 Specification and experimental results...... 80 4.5 Summary ........... 86 CHAPTER 5 CONCLUSION AND FUTURE WORK..... 87 REFERENCES........... 90 LIST OF PUBLICATIONS ........ 102

    [1] J. E. Larminie and A. Dicks, Fuel Cell Systems Explained. Chichester. U.K. Wiley,2000, pp. 308.
    [2] P. Famoouri and R. S. Gemmen, “Electrochemical circuit model of a PEM fuel cell,” in Proc. IEEE Power Eng. Soc. General Meeting, 2003, pp. 1436-1440.
    [3] J. M. Correa, F. A. Farret, J. R. Gomes, and M. G. Simoes, “Simulation of fuel-cell stacks using a computer-controlled power rectifier with the purposes of actual high-power injection applications,” IEEE Trans. Ind. Appl, vol. 39, no.4, pp.1136-1142, July/Aug. 2003.
    [4] H. Qiao, Y. Zhang, Y. Yao, and L. Wei, “Analysis of buck-boost converters for fuel cell electric vehicles,” in Proc. IEEE Int. Conf. Veh. Electron. Safety, pp. 109-113, Dec. 2006.
    [5] A. A. Ahmad, and A. Abrishamifar., ”A simple current mode controller for two switches buck-boost converter for fuel cells,” Electrical power conf., EPC 2007. IEEE Canada, Oct. 2007, pp. 363-366.
    [6] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor, ” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025-1035, Sep. 2005.
    [7] K. C. Tseng and T. J. Ling, “Novel high-efficiency step-up converter,” IEE Proc, vol. 151, no. 2, pp. 182-190, Mar. 2003.
    [8] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, ”Novel high step-up DC–DC converter for fuel cell energy conversion system, ” IEEE Trans. Ind. Electron., vol. 57, no. 6, June 2010.
    [9] R. J. Wai and R. Y. Duan, ”High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 847-856, July 2005.
    [10] H. Chung, W. L. Cheung, and K. S. Tang, “A ZCS bidirectional flyback DC/DC converter,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1426-1434, Nov. 2004.
    [11] A. Khaligh, “Stability criteria for the energy storage bi-directionalDC/DC converter in the Toyota hybrid system II,” in Proc. IEEE VPPC, Sep. 2007, pp. 348-352.
    [12] J. Moreno, M. E. Ortuzar, and J. W. Dixon, “Energy-management system for a hybrid electric vehicle using ultracapacitors and neural networks,”IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 614-623, Apr. 2006.
    [13] G. K. Andersen and F. Blaabjerg, “Current programmed control of a single-phase two-switch buck-boost power factor correction circuit,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 263-271, Feb. 2006.
    [14] E. Lefeuvre, D. Audigier, C. Richard, and D. Guyomar, “Buck-boost converter for sensorless power optimization of piezoelectric energy harvester,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 2018-2025, Sep. 2007.
    [15] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed. Hoboken, NJ: Wiley, 2003.
    [16] J. Chen, D. Maksimovic, and R. Erickson, “Buck-boost PWM converters having two independently controlled switches,” in Proc. IEEE 32nd Ann. Power Electron. Spec. Conf., June. 2001, vol. 2, pp. 736-741.
    [17] A. Rahnamaee, J. Milimonfared, K. Malekian, and M. Abroushan, “Reliability consideration for a high power zero-voltage-switching flyback power supply,” in Proc Power Electronics and Motion Control Conf.,, 2008. EPE-PEMC 2008. Sep. 2008, pp. 365-371.
    [18] J. M. Correa, F. A. Farret, L. N. Canha, and M. G. Simoes, “An electrochemical-based fuel-cell model suitable for electrical engineering automation approach,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1103-1112, Oct. 2004.
    [19] Z. Jiang and R. A. Dougal, “A compact digitally controlled fuel cell/battery hybrid power source,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1094-1104, Aug. 2006.
    [20] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258-2267, Jun. 2008.
    [21] W. S. Liu, J. F. Chen, T. J. Liang, and R. L. Lin, “Analysis, design, and control of bidirectional cascoded configuration for a fuel cell hybrid power system,” IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1565-1575, Jun. 2010.
    [22] H. Tao, J. L. Duarte, and M. A. M. Hendrix, “Line-interactive UPS using a fuel cell as the primary source,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3012-3021,Aug. 2008.
    [23] N. Kalhoff, “Integration of fuel cell applications into the power supply for information and telecommunications technology,” Telecom. Energy conf., INIELEC 2007, pp. 444-448.
    [24] X. Ren, Z. Tang, R. Xuan, J. Wei, and G. Hua, “Four switch buck-boost converter for telecom dc-dc power supply applications,” in Proc. APEC., 23rd Ann. IEEE, pp. 1527-1530, 2008.
    [25] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up DC-DC converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2007-2017, Jun. 2010.
    [26] B. Sahu and G. A. Rincon-Mora, “A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable applications,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 443-452, Mar. 2004.
    [27] J. M. Correa, F. A. Farret, N. Canha, and M. G. Simoes, “An electrochemical-based fuel-cell model suitable for electrical engineering automation approach,” IEEE Trans. Ind. Electron, vol. 51, no. 5, pp. 1103-1112, Oct. 2004.
    [28] Z. Jiang and R. A. Dougal, “A compact digitally controlled fuel cell/battery hybrid power source,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1094-1104, Aug.2006.
    [29] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron, vol. 55, no. 6, pp. 2258-2267, Jun. 2008.
    [30] H. Tao, J. L. Duarte, and M. A. M. Hendrix, “Line-interactive UPS using a fuel cell as the primary source,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3012-3021,Aug. 2008.
    [31] M. W. Ellis, M. R. V. Spakovsky, and D. J. Nelson, “Fuel cell systems: Efficient, flexible energy conversion for the 21st century,” Proc. IEEE, vol. 89, no. 12, pp. 1808-1818, Dec. 2001.
    [32] C. Wang, M. H. Nenrir, and S. R. Shaw, “Dynamic models and model validation for PEM fuel cells using electrical circuits,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 442-451, Jun. 2005.
    [33] “NexaTM Power Module User’s Manual” MAN5100078, Ballard Power Systemd Inc. 2003.
    [34] H. Xu, L. Kong, and X. Wen, “Fuel cell power system and high power DC-DC converter,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1250-1255, Sep. 2004.
    [35] J. C. Amphlett, R. F. Mann, B. A. Reppley, P. R. Roberge, and A. Rodrigues, “A model predicting transient responses of proton exchange membrane fuel cells,”Journal of Power Sources 61, pp. 183-188, 1996.
    [36] Y. Shan and S. Y. Choe, “A high dynamic PEM fuel cell model with temperature effects,” Journal of power sources 145, pp. 30-39, 2005.
    [37] X. Xue, J. Tang, A. Smirnova, R. England, and N. Sammes, “System level lumped-parameter dynamic modeling of PEM fuel cell,” Journal of Power Sources 133 pp. 188-204, 2004.
    [38] S. Y. Choe, J. W. Ahn, J. G. Lee, and S. H. Baek, ”Dynamic simulator for a PEM fuel cell system with a PWM DC/DC converter,” IEEE Trans. Energy Convertsion, vol. 23, no. 2, Jun. 2008
    [39] P. J. H. Wingelaar, J. L. Duarte, and M. A. M. Hedrix, “Dynamic characteristic of PEM Fuel Cells,” IEEE PESC, pp. 1635-1641, 2005.
    [40] J. Garnier, M. C. Pera, D. Hissel, D. Candusso, and N. Glandut, “ Dynamic PEM fuel cell modeling for automotive applications,” IEEE Vehicular Technology Conference, vol. 5. pp. 3284-3288, Oct. 2003.
    [41] M. J. Correa, F. A. Farret, V. A. Popov, and M. G. Simoes, “Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells,” IEEE Trans. Energy Conversion, vol. 20, no.1, pp. 211-218. Mar. 2005.
    [42] X. Kong, A. M. Khambadkone, and S. K. Thum, “A hybrid model with combined steady-state and dynamic characteristics of PEMFC fuel cell stack,” IAS Annual Meeting, vol.3, pp. 1618-1625. Oct. 2005
    [43] J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature 2001, 414, pp. 359-367.
    [44] M. Armand and J. M. Tarascon, “Building batter batteries,” Nature 2008, 451, pp. 652-657.
    [45] R. Xiong, H. He, F. Sun, and K. Zhao, “Online estimation of peak power capability of Li-ion batteries in electric vehicles by a hardware-in-loop approach,” Energies 2012, 5, pp. 1455-1469.
    [46] N. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic, “Algorithms for advantaged battery-management systems,” IEEE Contr. Syst. Mag. 2010, 30, pp. 49-68.
    [47] M. Chen and G. A. Rincon-Mora, “Accurate electrical battery model capable of predicting runtime and I–V performance,” IEEE Trans. Energy Convers. 2006, 21,pp. 504-511.
    [48] M. W. Verbrugge and P. Liu, “Electrochemical characterization of high-power lithium ion batteries using triangular voltage and current excitation sources,” J. power Sources 2007, 174, pp. 2-8.
    [49] S. Lee, J. Kim, J. Lee, and B. H. Cho, “State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge,” J. Power Sources 2008, 185, pp. 1367-1373.
    [50] H. He, R. Xiong, and J. Fan, “Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach,” Energies 2011,4, pp. 582-598.
    [51] C. Zhang, J. Jiang, and W. Zhang, “Sharkh, S.M. Estimation of state of charge of lithium-ion batteries used in HEV using robust extended Kalman filtering,” Energies 2012, 5, pp. 1098-1115.
    [52] Y. Q. Shen, “Adaptive online state-of-charge determination based on neuro-controller and neural network,” Energy Convers. Manag. 2010, 51, pp.
    1093-1098.
    [53] C. Mohammad and J. Mohammad “State-of-charge estimation for lithium-ion batteries using neural networks and EKF,” IEEE Trans. Ind. Electron. 2010, 57, pp. 4178-4187.
    [54] M. Doyle, T. F. Fuller, and J. Newman, “Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell” J. Electrochem. Soc. 1993, 140, pp. 1526-1533.
    [55] T. F. Fuller, M. Doyle, and J. Newman, “Simulation and optimization of the dual lithium ion insertion cell,” J. Electrochem. Soc. 1994, 141, pp. 1-10.
    [56] K. Thomas, J. Newman, and R. Darling, Advances in Lithium-Ion Batteries: Mathematical Modeling of Lithium Batteries. Springer: New York, NY, USA, 2002.
    [57] R. J. Wai, C. Y. Lin, and C. C. Chu, “ High step-up DC-DC converter for fuel cell generation system,” in Proc. IEEE IECON, Nov. 2004, pp. 57-62.
    [58] T. J. Liang and K. C. Tseng, “Analysis of integrated boost-flyback step-up converter,” IEE Proc.-Electr. Power Appl., vol. 152, no. 2, pp. 217-225, Apr. 2005.
    [59] B. Bryant and M. K. Kazimierczuk, “Voltage-loop power-stage transfer functions with MOSFET delay for boost PWM converter operating in CCM,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 347-353, Feb. 2007.
    [60] X. Wu, J. Zhang, X. Ye, and Z. Qian, “Analysis and derivations for a family ZVS converter based on a new active clamp ZVS cell,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 773-781, Feb. 2008.
    [61] D. C. Lu, K. W. Cheng, and Y. S. Lee, “A single-switch continuous - conduction - mode boost converter with reduced reverse-recovery and switching losses,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 767-776, Aug. 2003.
    [62] L. J. Shu, T. J. Liang, L. S. Yang, and R. L. Lin, “Transformerless High Step-Up DC-DC Converter Using Cascode Technique,” IEEE International Power Electronics
    Conference – ECCE Asia, pp. 63-67, 2010
    [63] N. P. Papanikolaou and E. C. Tatakis, “Active voltage clamp in flyback converters operating in CCM mode under wide load variation,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 632- 640, Jun. 2004.
    [64] B. R. Lin and F. Y. Hsieh, “Soft-switching zeta–flyback converter with a buck–boost type of active clamp,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2813-2822, Oct. 2007.
    [65] C. M. Wang, “A novel ZCS-PWM flyback converter with a simple ZCS-PWM commutation cell,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 749-757, Feb. 2008.
    [66] R. S. Weissbach and K. M. Torres, “A Noninverting buck-boost converter with reduced components using a microcontroller,” In Proceedings of the IEEE Southeast Conference 2001, Clemson, SC, USA, 30 March-1 Apr. 2001, pp. 79-84.
    [67] B. Sahu and G. A. Rincon-Mora, “A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable application,” IEEE Trans. Power
    Electron. vol. 19, no. 2. pp. 443-452, Mar. 2004.
    [68] M. Gaboriault and A. Notman, “A high efficiency, non-inverting, buck-boost DC-DC converter,” In Proceedings of the Applied Power Electronics Conference and Exposition (APEC’04), Nineteenth Annual IEEE, Anaheim, CA, USA, 22-26 Feb. 2004, vol. 3, pp. 1411-1415.
    [69] H. Qiao, Y. Zhang, Y. Yao, and L. Wei, “Analysis of Buck-Boost Converter for Fuel Cell Electric Vehicles,” In Proceedings of IEEE International Conference on Vehicular Electronics and Safety, Shanghai, China, 13-15 Dec. 2006, pp. 109-113.
    [70] E. C. W. de Jong, I. W. Hofsajer, and J. A. Ferreira, “A new approach to low conversion ratio DC–DC converters,” in Proc. IEEE PESC, Jun. 2002, vol. 2, pp. 431-436.
    [71] H. Chung, W. L. Cheung, and K. S. Tang, “A ZCS bidirectional flyback DC/DC converter,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1426-1434, Nov. 2004.
    [72] R. J. Wai and R. Y. Duan, “High-efficiency bidirectional converter for power sources with great voltage diversity,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1986-1996, Sep. 2007.
    [73] M. Jain, M. Daniele, and P. K. Jain, “A bidirectional DC–DC converter topology for low power application,” IEEE Trans. Power Electron. vol. 15, no. 4, pp. 595-606, Jul. 2000.
    [74] J. Zhang, J. S. Lai, R. Y. Kim, and W. Yu, “High-power density design of a soft-switching high-power bidirectional DC–DC converter,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1145-1153, Jul. 2007.
    [75] L. Gao, Z. Jiang, and R. A. Dougal, “Evaluation of active hybrid fuel cell/battery power sources,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 1, pp. 346-355, Jan. 2005.
    [76] J. Moreno, M. E. Ortuzar, and J. W. Dixon, “Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 614-623, Apr. 2006.
    [77] J. Perkinson, “UPS system: a review,” IEEE Proc. APEC’88, pp. 151-154, Feb. 1988.
    [78] J. Y. Lee, Y. M. Chang, and F. Y. Liu, “A new UPS topology employing a PFC boost rectifier cascaded high-frequency tri-port converter,” IEEE Trans. Ind. Electron., vol. 46, pp. 803-813, Aug. 1999.
    [79] C. M. Hong, L. S. Yang, T. J. Liang, and J. F. Chen, “Novel bidirectional DC-DC converter with high step-up/down voltage gain,” in Proc IEEE ECCE Conf, Sep. 2009, pp. 60-66
    [80] H. Plesko, J. Biela, J. Luomi, and J. W. Kolar, “Novel concepts for integrating the electric drive and auxiliary DC–DC converter for hybrid vehicles,” IEEE Trans.Power Electron., vol. 23, no. 6, pp. 3025-3034, Nov. 2008.
    [81] Z. Jiang and R. A. Dougal, “A hybrid fuel cell power supply with rapid dynamic response and high peak-power capacity,” in Proc. IEEE APEC, Mar. 2006, pp. 1250-1255.
    [82] R. J. Wai and R. Y. Duan, “High-efficiency bidirectional converter for power sources with great voltage diversity,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1986-1996, Sep. 2007.
    [83] M. Jain, M. Daniele, and P. K. Jain, “A bidirectional DC–DC converter topology for low power application,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 595-606, July 2000.
    [84] J. Zhang, J. S. Lai, R. Y. Kim, and W. Yu, “High-power density design of a soft-switching high-power bidirectional DC–DC converter,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1145-1153, July 2007.
    [85] W. S. Liu, J. F. Chen, T. J. Liang, R. L. Lin, and C. H. Liu, “Analysis, design, and control of bidirectional cascoded configuration for a fuel cell hybrid power system,” IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1565-1575, Jun. 2010.
    [86] W. S. Liu, J. F. Chen, T. J. Liang, and R. L. Lin, “Multicascoded sources for a high efficiency fuel-cell hybrid power system in high-voltage application,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 931-942, Mar. 2011.
    [87] D. K. Choi, B. K. Lee, S. W. Choi, C. Y. Won, and D. W. Yoo, “A novel power conversion circuit for cost-effective battery-fuel cell hybrid systems,” J. Power Sources, vol. 152, pp. 245-255, Dec. 2005.
    [88] B. S. Borowy and Z. M. Salameh, “Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system,” IEEE Trans. Energy Conversion, vol. 11, pp. 367-375, Jun. 1996.
    [89] H. Matusuo and F. Kurokawa, “New solar cell power supply system using a boost type bidirectional DC-DC converter,” IEEE Trans. on Industrial Electronics, vol. IE-31, pp. 51-55, Feb. 1984.
    [90] G. J. Su, J. P. Cunningham, and L. Tang, “A reduced-part, triple-voltage DC-DC converter for electric vehicle power management,” IEEE Proc. PESC’07, pp. 1989-1994, Jun. 2007.
    [91] T. J. Liang, T. Wen, K. C. Tseng, and J. F. Chen, “Implementation of a regenerative pulse charger using hybrid buck-boost converter,” IEEE Proc. PEDS’01, vol. 2, pp. 437-442, Oct. 2001.
    [92] B. Ray, “Single-cycle resonant bidirectional DC/DC power conversion,” IEEE Proc. APEC’93, pp. 44-50, Mar. 1993.
    [93] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, 3rd Edt, John Wiley & Sons, 2003.
    [94] R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics, 2nd Edt, Kluwer Academic Publishers, 2001.
    [95] K. Yamamoto, E. Hiraki, T. Tanaka, M. Nakaoka, and T. Mishima, “Bidirectional DC-DC converter with full-bridge/push-pull circuit for automobile electric power systems, ” in Proc IEEE. PESC’06, pp. 1-5, Jun. 2006.
    [96] M. Jain, M. Daniele, and P. K. Jain, “A bidirectional DC-DC converter topology for low power application,” IEEE Trans. Power Electron, vol. 15, no. 4, pp. 595-606, Jul. 2000.
    [97] H. J. Chiu and L. W. Li, “A bidirectional DC-DC converter for fuel cell electric vehicle driving system,” IEEE Trans. Power Electron, vol. 21, no. 4, pp. 950-1958, Jul. 2006.
    [98] O. Garcia, L. A. Flores, J. A. Oliver, J. A. Cobos, and J. de la Pena, “Bi-directional DC/DC converter for hybrid vehicles,” in Proc IEE. PESC’05, Jun. 2005, pp. 1881-1886.
    [99] T. J. Liang and K. C. Tseng, “Analysis of integrated boost-flyback step-up converter,” IEE Proc.-Electr. Power Appl., vol. 152, no. 2, pp. 217-225, Apr. 2005.
    [100] Q. Zhao and F. C. Lee, “High performance coupled-inductor DC-DC converters,” in Proc. IEEE. APEC’03, Feb. 2003, vol. 1, pp. 109-113.
    [101] J. Wang, W. G. Dunford, and K. Mauch, “A comparison of modified boost converters with continuous inductor current mode and ripple free input current with conventional converters,” in Conf. Rec. IEEE-IAS Annu. Meeting, San Diego, CA, Oct. 1996, vol. 2, pp. 878-885.
    [102] J. Wang, W. G. Dunford, and K. Mauch, “A comparison between two proposed boost topologies and conventional topologies for power factor correction,” in Conf. Rec. IEEE-IAS Annu. Meeting, San Diego, CA, Oct. 1996, Vol. 2, pp. 1210-1217.
    [103] X. Huang, X. Wang, T. Nergaard, J. S. Lai, X. Xu, and L. Zhu, “Parasitic ringing and design issues of digitally controlled high power interleaved boost converters,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1341-1352, Sep. 2004.
    [104] E. D. Jodar, J. A. Villarejo, F. Soto, and J. S. Muro, “Effect of the output impedance in multiphase active clamp buck converters,” IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3231-3238, Sep. 2008.
    [105] B. R. Lin and C. L. Huang, “Interleaved ZVS converter with ripple-current cancellation,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1576-1585, Apr. 2008.
    [106] M. Ilic and D. Maksimovic, “Interleaved zero-current-transition buck converter,” IEEE Trans. Ind. Appl., vol. 43, no. 6, pp. 1619-1627, Nov./Dec. 2007.
    [107] C. S. Moo, Y. J. Chen, H. L. Cheng and Y. C. Hsieh, “Twin-buck converter with zero-voltage transition,” IEEE Trans. Power Electron, vol. 58, no. 6, pp. 2366-2371, Jun. 2011.
    [108] Y. C. Hsieh, T. C. Hsueh and H. C. Yen, “An interleaved boost converter with zero-voltage transition,” IEEE Trans. Power Electron, vol. 24, no. 4, pp. 973-978, Apr. 2009.
    [109] P. W. Lee, Y. S. Lee, David K. W Cheng, and X. C. Liu, “Steady-state analysis of an interleaved boost converter with coupled inductors,” IEEE Trans. Ind. Electron, vol. 47, no. 4, pp. 787-795, Aug. 2000.
    [110] Y. Hu, Y. Xie, H. Tain, and B. Mei., “Characteristics analysis of two-channel interleaved boost converter with integrated coupling inductors,” in Proc. IEEE Power Electronics Specialists Conf., Jun. 2006.
    [111] K. Hiroyuki, M. Seans, J. Brett, S. James, R. Biswajit, and T. Zafer.” Coupled inductor characterization for a high performance interleaved boost converter,” IEEE Trans, Magnetics, vol. 45, no. 10, Oct. 2009.
    [112] D. K. W. Cheng, X. C. Liu, and Y. S. Lee, “A new modified boost converter with ripple free input current by using coupled inductors,” in Proc. IEE Int. Conf. Power Electronics and Variable Speed Drives, London, U.K., Sep. 1998, pp. 592-599.
    [113] W. Li and X. He, “A family of isolated interleaved boost and buck converter with winding-cross-coupled inductors,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 3164-3173, Nov. 2008.
    [114] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “Boost converter with coupled indictors and buck-boost type of active clamp,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154-162, Jan. 2008.
    [115] Y. T. Lee, A. Khaligh, and A Emadi, “A compensation technique for smooth transitions in a noninverting buck–boost converter,” IEEE Trans. Power Electron.,vol. 24, no. 4, pp. 1002-1016, Apr. 2009.
    [116] P. W. Lee, Y. S. Lee, D. K. W. Cheng, and X. C. Liu, “Steady-state analysis of an interleaved boost converter with coupled inductors,” IEEE Trans. Ind. Electron., vol 47, no. 4, pp. 787-795, Aug. 2000.
    [117] B. R. Lin and H. H. Lu, “A novel PWM scheme for single-phase three-levelpower-factor-correction circuit,” IEEE Trans. Ind. Electron., vol. 47, no. 2, pp. 245-252, Apr. 2000.
    [118] D. Maksimovic and R. Erickson, “Universal-input, high-power-factor, boost doubler rectifiers,” in Proc. IEEE APEC, 1995, pp. 459-465
    [119] G. Yao, A. Chen, and X. He, “Soft switching circuit for interleaved boost converters, ” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 80-86, Jan. 2007
    [120] C. M. Oliveira Stein, J. R. Pinheiro, and H. L. Hey, “A ZCT auxiliary commutation circuit for interleaved boost converters operating in critical conduction mode, ” IEEE Trans. Power Electron., vol. 17, no.6, pp. 954-962, Nov. 2002.
    [121] J. R. Tsai, T. F. Wu, C. Y. Wu, Y. M. Chen, and M. C. Lee, “Interleaving phase shifters for critical-mode boost PFC, ” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1348-1357, May 2008.
    [122] C. Liu, A. Johnson, and J. S. Lai, “A novel three-phase high-power soft-switched DC/DC converter for low-voltage fuel cell applications,” IEEE Trans. Power Electron., vol. 41, no.6, pp. 1691-1697, Nov./Dec. 2005.
    [123] P. C. Huang, W. Q. Wu, H. H. Ho, and K. H. Chen, “Hybrid buck–boost feed forward and reduced average inductor current techniques in fast line transient and high-efficiency buck–boost converter,” IEEE Trans. Power Electron., vol 25, no. 3, pp. 719-730, Mar. 2010.

    下載圖示 校內:2015-09-10公開
    校外:2015-09-10公開
    QR CODE