| 研究生: |
白佩鑫 Pai, Pei-Hsin |
|---|---|
| 論文名稱: |
粒子調適之無網格神經粒子法應用於流體動態模擬 A Neural Particle Method with Adaptive Particle Refinement for Hydrodynamic Modeling |
| 指導教授: |
戴義欽
Tai, Yih-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 物理導向類神經網絡 、無網格神經粒子法 、界面追蹤技術 、粒子調適技術 、機器學習 |
| 外文關鍵詞: | Physics-informed neural networks, Neural particle method, Interfacetracking, Adaptive particle, Machine learning |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Aubram, D., Savidis, S. A., & Rackwitz, F. (2008). Application of operator split ALE methods to large deformation problems in granular soil.. Retrieved from https://api.semanticscholar.org/CorpusID:62818474
Bai, J., Zhou, Y., Ma, Y., Jeong, H., Zhan, H., Rathnayaka, C., ... Gu, Y. (2022). A general neural particle method for hydrodynamics modeling. Computer Methods in Applied Mechanics and Engineering, 393, 114740.
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research, 18, 1–43.
Benz, W. (1990). Smooth particle hydrodynamics: A review. The Numerical Modelling of Nonlinear Stellar Pulsations: Problems and Prospects, 269–288.
Chiu, P.H., Wong, J. C., Ooi, C., Dao, M. H., & Ong, Y.S. (2022). CAN-PINN: A fast physics-informed neural network based on coupled-automatic–numerical differentiation method. Computer Methods in Applied Mechanics and Engineering, 395, 114909.
Coetzee, C. J. (2017). Calibration of the discrete element method. Powder Technology, 310, 104–142.
Cummins, S. J., & Rudman, M. (1999). An SPH projection method. Journal of Computational Physics, 152(2), 584–607.
Donea, J., Giuliani, S., & Halleux, J.P. (1982). An arbitrary Lagrangian Eulerian finite element method for transient dynamic fluid structure interactions. Computer Methods in Applied Mechanics and Engineering, 33(13), 689–723.
Edelsbrunner, H., Kirkpatrick, D., & Seidel, R. (1983). On the shape of a set of points in the plane. IEEE Transactions on information theory, 29(4), 551–559.
Elfwing, S., Uchibe, E., & Doya, K. (2018). Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural networks, 107, 3–11.
Fathony, R., Sahu, A. K., Willmott, D., & Kolter, J. Z. (2020). Multiplicative filter networks. In International conference on learning representations.
Garoosi, F., & Hooman, K. (2022). Numerical simulation of multiphase flows using an enhanced volume-of-fluid (VOF) method. International Journal of Mechanical Sciences, 215, 106956.
Gladstone, R. J., Nabian, M. A., & Meidani, H. (2022). FO-PINNs: A first order formulation for physics-informed neural networks. arXiv preprint arXiv:2210.14320.
Gnanasambandam, R., Shen, B., Chung, J., Yue, X., & Kong, Z. (2023). Self-scalable tanh (Stan): Multiscale solutions for physics-informed neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence.
Guo, H., & Yang, X. (2021). Deep unfitted nitsche method for elliptic interface problems. arXiv preprint arXiv:2107.05325.
Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi dimensional integrals. Numerische Mathematik, 2, 84–90.
Hirt, C. W., Amsden, A. A., & Cook, J. (1974). An arbitrary Lagrangian Eulerian computing method for all flow speeds. Journal of Computational Physics, 14(3), 227–253.
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225.
Hu, C., & Sueyoshi, M. (2010). Numerical simulation and experiment on dam break problem. Journal of Marine Science and Application, 9, 109–114.
Hui, W., Li, P., & Li, Z. (1999). A unified coordinate system for solving the twodimensional Euler equations. Journal of Computational Physics, 153(2), 596–637.
Jagtap, A. D., Kawaguchi, K., & Karniadakis, G. E. (2020). Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. Journal of Computational Physics, 404, 109136.
Jagtap, A. D., Kharazmi, E., & Karniadakis, G. E. (2020). Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Computer Methods in Applied Mechanics and Engineering, 365, 113028.
Jánosi, I., Jan, D., Szabó, K. G., & Tél, T. (2004). Turbulent drag reduction in dambreak flows. Experiments in Fluids, 37, 219–229.
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440.
Khayyer, A., Gotoh, H., & Shao, S. (2008). Corrected incompressible SPH method for accurate watersurface tracking in breaking waves. Coastal Engineering, 55(3), 236–250.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Koshizuka, S., & Oka, Y. (1996). Movingparticle semiimplicit method for fragmentation of incompressible fluid. Nuclear Science and Engineering, 123(3), 421–434.
Koshizuka, S., Shibata, K., Kondo, M., & Matsunaga, T. (2018). Moving particle semi implicit method: A meshfree particle method for fluid dynamics. Academic Press.
Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks,9(5), 987–1000.
Le, T.D., Colagrossi, A., Colicchio, G., & Greco, M. (2013). A critical investigation of smoothed particle hydrodynamics applied to problems with free surfaces. International Journal for Numerical Methods in Fluids, 73(7), 660–691.
Lee, E.S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., & Stansby, P. (2008). Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. Journal of Computational Physics, 227(18), 8417–8436.
Li, Z., & Arora, S. (2019). An exponential learning rate schedule for deep learning. arXiv preprint arXiv:1910.07454.
Liu, L., Liu, S., Xie, H., Xiong, F., Yu, T., Xiao, M., ... Yong, H. (2024). Discontinuity computing using physics-informed neural networks. Journal of Scientific Computing, 98(1), 22.
Liu, S., Zhongkai, H., Ying, C., Su, H., Zhu, J., & Cheng, Z. (2022). A unified hardconstraint framework for solving geometrically complex PDEs. Advances in Neural Information Processing Systems, 35, 20287–20299.
Lobovskỳ, L., BotiaVera, E., Castellana, F., MasSoler, J., & SoutoIglesias, A. (2014). Experimental investigation of dynamic pressure loads during dam break. Journal of Fluids and Structures, 48, 407–434.
Low, K. W., Lee, C. H., Gil, A. J., Haider, J., & Bonet, J. (2021). A parameter-free total Lagrangian smooth particle hydrodynamics algorithm applied to problems with free surfaces. Computational Particle Mechanics, 8, 859–892.
Mao, Z., Jagtap, A. D., & Karniadakis, G. E. (2020). Physics-informed neural networks for highspeed flows. Computer Methods in Applied Mechanics and Engineering, 360, 112789.
McKee, S., Tomé, M. F., Ferreira, V. G., Cuminato, J. A., Castelo, A., Sousa, F., & Mangiavacchi, N. (2008). The MAC method. Computers & Fluids, 37(8), 907–930.
Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., ... others (2017). Mixed precision training. arXiv preprint arXiv:1710.03740.
Mishra, S., & Molinaro, R. (2022). Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs. IMA Journal of Numerical Analysis, 42(2), 981–1022.
Misra, D. (2019). Mish: A self regularized non-monotonic activation function. arXiv preprint arXiv:1908.08681.
Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 30(1), 543–574.
Morris, J. P., Fox, P. J., & Zhu, Y. (1997). Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics, 136(1), 214–226.
Munjiza, A., Owen, D., & Bicanic, N. (1995). A combined finite discrete element method in transient dynamics of fracturing solids. Engineering Computations, 12(2), 145–174.
Nabian, M. A., Gladstone, R. J., & Meidani, H. (2021). Efficient training of physics-informed neural networks via importance sampling. Computer Aided Civil and Infrastructure Engineering, 36(8), 962–977.
Osher, S., Fedkiw, R., & Piechor, K. (2004). Level set methods and dynamic implicit surfaces. Appl. Mech. Rev., 57(3), B15–B15.
Pai, P.H., Kan, H.C., Wong, H.K., & Tai, Y.C. (2024). A neural particle method with interface tracking and adaptive particle refinement for free surface flows. Communications in Computational Physics, (under review).
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707.
Rufai, O., Jin, Y.C., & Tai, Y.C. (2019). Rheometry of dense granular collapse on inclined planes. Granular Matter, 21, 1–21.
Sarkhosh, P., & Jin, Y.C. (2023). A hybrid 1D 2D Lagrangian solver with moving coupling to simulate dambreak flow. Advances in Water Resources, 104487.
Schumaker, L. (2007). Spline functions: basic theory. Cambridge university press.
Shao, K., Wu, Y., & Jia, S. (2023). An improved neural particle method for complex free surface flow simulation using physics-informed neural networks. Mathematics, 11(8), 1805.
Shu, C.W., & Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2), 439–471.
Somasekhar, M., Vivek, S., Malagi, K. S., Ramesh, V., & Deshpande, S. (2012). Adaptive cloud refinement (ACR) adaptation in meshless framework. Communications in Computational Physics, 11(4), 1372–1385.
Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very deep networks. Advances in Neural Information Processing Systems, 28.
Sukumar, N., & Srivastava, A. (2022). Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics and Engineering, 389, 114333.
Sun, P., Colagrossi, A., Marrone, S., & Zhang, A. (2017). The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme. Computer Methods in Applied Mechanics and Engineering, 315, 25–49.
Sussman, M., Smereka, P., & Osher, S. (1994). A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114(1), 146–159.
Tancik, M., Srinivasan, P., Mildenhall, B., FridovichKeil, S., Raghavan, N., Singhal, U.,... Ng, R. (2020). Fourier features let networks learn high frequency functions in low dimensional domains. Advances in Neural Information Processing Systems, 33, 7537–7547.
Tay, W.B., Damodaran, M., Teh, Z.D., & Halder, R. (2020). Investigation of applying physics-informed neural networks (PINN) and variants on 2D aerodynamics problems. In Fluids engineering division summer meeting (Vol. 83730, p. V003T05A055).
Wessels, H., Weißenfels, C., & Wriggers, P. (2020). The neural particle method–an updated Lagrangian physics-informed neural network for computational fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 368, 113127.
Wu, S., Zhu, A., Tang, Y., & Lu, B. (2022). Convergence of physics-informed neural networks applied to linear second-order elliptic interface problems. arXiv preprint arXiv:2203.03407.
Xie, Y., & Ying, W. (2020). A fourth-order kernel-free boundary integral method for implicitly defined surfaces in three space dimensions. Journal of Computational Physics, 415, 109526.
Ye, Z., & Zhao, X. (2017). Investigation of water-water interface in dam break flow with a wet bed. Journal of Hydrology, 548, 104–120.
Ye, Z., Zhao, X., & Deng, Z. (2016). Numerical investigation of the gate motion effect on a dam break flow. Journal of Marine Science and Technology, 21, 579–591.
校內:2028-01-01公開