| 研究生: |
李日閎 Lee, Ri-Hong |
|---|---|
| 論文名稱: |
二次粒料應用於鋪面工程之實驗室評估 Laboratory Evaluation of Secondary Aggregates Applied to Pavement Engineering |
| 指導教授: |
陳建旭
Chen, Jian-Shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 多孔隙瀝青混凝土 、二次粒料 、轉爐石 、焚化爐底碴 |
| 外文關鍵詞: | secondary aggregate, porous asphalt concrete, basic oxygen furnace slag, Bottom Ash |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣天然砂石逐漸短缺,在環保的議題下,尋找適當的替代粒料及節能減碳是公共工程的重要課題。道路替代粒料可能包含轉爐石(Basic Oxygen Furnace Slag, BOF)及焚化爐底碴(Bottom Ash, BA),上述材料稱為二次粒料(secondary aggregate),二次粒料應用於瀝青混凝土中,不僅可以減少新鮮粒料(primary aggregate)的使用量,還可以節能減碳,符合環保及資源回收的精神。本研究分為二個部分,首先以轉爐石全取代天然粗粒料之多孔隙瀝青混凝土(Porous Asphalt Concrete, PAC),根據日本排水性鋪裝技術指針所規定的配合設計方法,以高黏度瀝青,針對NMAS 12.5mm進行配合設計,製作馬歇爾試體進行實驗室工程性質評估以及績效評估,比較其耐久性、功能性及安全性。第二個部分則評估不同粗細粒料添加比例的焚化爐底碴混合天然粒料對道路底層的工程性質影響,並依照內政部營建署的級配粒料底層規範(第02726章)進行各項試驗,添加比例如下:天然粗粒料(55%)混合天然細粒料(45%)(對照組)、天然粗粒料(55%)混合底碴細粒料(45%)、底碴粗粒料(55%)混合天然細粒料(45%)、底碴粗粒料(55%)混合底碴細粒料(45%)。拌和後進行粒料物理試驗,並依照CNS 12382進行CBR試驗。
轉爐石取代天然粗粒料之PAC試驗結果顯示熱渣改質轉爐石PAC較其餘兩種PAC強度較強,有較佳的耐久性。功能性方面,三種PAC的滲透係數皆高於規範值,有良好的透水性。安全性方面,抗滑性能結果顯示PAC在安全性方面皆有一定水準。車轍輪跡試驗結果顯示轉爐石PAC有較佳的抗車轍能力。焚化爐底碴混合天然粒料之底層級配試驗結果顯示只有含有天然粗粒料的級配高於規範值,且底層級配的強度取決於粗粒料。
The shortage of natural aggregate (NA) in Taiwan is gradually getting serious. On the environmental issue, looking for secondary aggregate is the important topic in public construction. The secondary aggregate of pavement includes basic oxygen furnace slag (BOF) and Bottom Ash (BA). Secondary aggregate applying to asphalt concrete can not only reduction the usage of primary aggregate, but also energy saving and carbon reduction. The study is divided into two parts. First, BOF substitutes for natural coarse aggregate of porous asphalt concrete (PAC). Engineering properties of nominal maximum aggregate size (NMAS) 12.5 mm PAC with high viscosity asphalt were evaluated by means of conventional laboratory test to compare with durability, functionality and safety. Second part evaluates the engineering properties of base course by blending different percentage of BA and NA. Four different combinations are natural coarse aggregate blends natural fine aggregate, natural coarse aggregate blends BA fine aggregate, BA coarse aggregate blends natural fine aggregate and BA coarse aggregate blends BA fine aggregate.
The result of BOF PAC showed modified BOF PAC has better durability than traditional BOF and natural aggregate PAC. In functionality respect, the permeability coefficient of three PAC all has well functional. In safety respect, the result of British pendulum tester (BPN) showed PAC has good safety. In rutting resistance respect, the result showed BOF PAC can provide better rutting resistance. The base course result of BA aggregate blending natural aggregate showed only the combination with natural coarse aggregate can meet the specification values, and the strength of base course depends on coarse aggregate.
日本道路協會 (1996) 「排水性鋪裝技術指針」,日本。
日本道路協會 (1999) 「排水性鋪裝技術指針(案)」,日本。
行政院公共工程委員會 (2013) “公共工程施工綱要規範,第02798章,「多孔隙瀝青混凝土鋪面」”,台北。
行政院公共工程委員會 (2011) “公共工程施工綱要規範,第02741章,「瀝青混凝土之一般要求」”,台北。
中鋼集團 (2007) 「轉爐石利用推廣手冊」,高雄。
中華鋪面工程學會 (2005),「排水性瀝青混凝土」,桃園。
中華鋪面工程學會 (2010) 「轉爐石應用於瀝青混凝土鋪面使用手冊」,第11-14頁。
王金鐘 (2005) 「轉爐石作為基底層材料及其工程特性之研究」,博士論文,國立成功大學土木系,台南。
朱柏彥 (2008) 「二次粒料應用於熱拌瀝青混凝土之評估」,博士論文,國立成功大學土木系,台南。
林育丞 (2003) 「垃圾焚化爐底碴與水泥拌合後之潛在問題探討」,碩士論文,國立中央大學土木工程研究所,中壢。
劉國忠 (2001) 「煉鋼爐碴之資源化技術與未來推展方向」,環保月刊,第四期,十月號,第117-118頁。
陳毅明 (2004) 「利用垃圾焚化底碴替代瀝青混凝土細粒料之研究」,碩士論文,私立淡江大學土木工程研究所,淡水。
徐登文,林群凱 (2011) 「不同瀝青膠泥應用於多孔隙轉爐石瀝青混凝土行為比較之研究」,轉爐石應用於瀝青混凝土鋪面研討會論文集,第19-28頁,高雄。
沈得縣,陳柏諭,沈美毅,李承効 (2011) 「轉爐石裹漿應用於多孔隙瀝青混凝土鋪面之研究」,鋪面工程期刊,第11卷,第55-64頁。
林登峰,黃隆昇,王忠山,葉庭瑋 (2012) 「市區道路鋪築排水性鋪面長期成效之研究」,鋪面工程期刊,第10卷,第47-54頁。
黃隆昇,林登峰,王昱凱 (2012) 「轉爐石瀝青混凝土應用於屏東縣縣道之研究」,轉爐石瀝青混凝土研討會論文集,第19-41頁,高雄。
Alvarez, A. E., A.Epps-Martin, C.K.Estakitiri, J.W.Button, C.J.Glover, and S.H.Jung. (2006). “Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses,” FHWA/TX-06/0-5262-1, Texas Transoprtation Institute, College Station Texas.
Alvarez, A.E., A.E. Martin and C. Estakhri (2011). “A Review of Mix Design and Evaluation Research for Permeable Friction Course Mixtures,” Construction and Building Materials, Vol.25, pp.108-113.
Chimenos, J.M., Fernandez, A.l., Nadal, R. and Espiell, F. (2000). “Short Term Natural Weathering of MSWI Bottom Ash,” Journal of Hazardous Materials, Vol.79, pp.287-299.
Colonna, P., Berloco, N., Ranieri, V., Shuler, S.T. (2012). “Application of Bottom Ash for Pavement Binder Course,” Procedia - Social and Behavioral Sciences, Vol.53, pp.961-971.
Daniel, J.S. and Chehab, G.R. (2008). “Use of RAP Mixtures in Mechanistic Empirical Pavement Design Guide,” Transportation Research Board 87th Annual Meeting, Washington, D.C.
Elisabete, F., Paulo, P., Luís de Picado-Santosb and Adriana, S. (2009). “Traffic Noise Changes due to Water on Porous and Dense Asphalt Surfaces,” Road Materials and Pavement Design, Vol.10, Issue 3, pp.587-607.
Frigio, F., Pasquini, E., Ferrotti, G., Canestrari, F. (2013) “Improved Durability of Recycled Porous Asphalt,” Construction and Building Materials, Vol.48, pp.755-763.
Hassan, M.M. and Khalid, H. (2010) “Mechanical and Environmental Characteristics of Bituminous Mixtures with Incinerator Bottom Ash Aggregates,” International Journal of Pavement Engineering, Vol.11, pp.83-94.
Hossam, F.H., Salim Al-Oraimi, Ramzi, T. (2005). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer,” Journal of Materials in Civil Engineering, Vol.17, pp.416-422.
Huang, C.M., Chiu, C.T., Li, K.C., Yang, W.F. (2006). “Physical and Environmental Properties of Asphalt Mixtures Containing Incinerator Bottom Ash,” Journal of Hazardous Materials, Vol.137, pp.1742-1749.
Koide (1993). “Research on Using BOF Slag for Road Construction,” Nakayama Steel Works Technical Report, Osaka, Japan.
Kühn, M., Behmenburg, H. (2000). “Decreasing the Scorification of Chrome,” Report EUR 19382, Primary Steelmaking, European Commission 39, Luxembourg.
Legret, M., Chaurand, P., Bénard, A., Capowiez, Y., Deneele, D., Reynard, J., Lassabatére, L., Yilmaz, D., Rose, J., Domas, J., Béchet, B., Richard, D., Bottero, J.-Y. (2010). ”A Multidisciplinary Approach for the Assessment of the Environmental Behavior of Basic Oxygen Furnace Slag Used in Road Construction, ” Proceedings of 6th European Slag Conference, Madrid, pp.77-88.
Liu, Q., García, Á., Schlangen, E., Martin van de Ven. (2011). “Induction Healing of Asphalt Mastic and Porous Asphalt Concrete,” Construction and Building Materials, Vol.25, pp.3746-3752.
Mohammad, L.N., Negulescu, I.I., Wu, Z., Daranga, C., Daly, W.H. and Abadie, C. (2003). “Investigation of the Use of Recycled Polymer Modified Asphalt Binder in Asphalt Concrete Pavements,” Journal of the Association of Asphalt Paving Technologists, Vol.72, pp.551-594.
Nakanishi, H., Asano, K. and Goto, K. (2000). “Study on Improvement in Durability of Porous Asphalt Concrete,” Proceedings of Road Engineering and Association of Asian and Australasia, Tokyo, Japan.
Ogunro, V.O., Inyang, H.I., Hopper, D., Oturkar, A. (2004). “Gradation Control of Bottom Ash Aggregate in Superpave Bituminous Mixes,” Journal of Materials in Civil Engineering, Vol.16, pp.604-613.
Pacheco, M.C., Etxeberria, M., Meneses, J.M., Berridi, I., Ávila, J.M. (2010). ”Physical-Mechanical Properties and Durability of Concrete made with Blast Furnace and Electric Arc Furnace Slag as Aggregate, ” Proceedings of 6th European Slag Conference, Madrid, pp.265-277.
Perviz, A. and Burak, S. (2009). “Evaluation of Steel Slag Coarse Aggregate in Hot Mix Asphalt Concrete,” Journal of Hazardous Materials, Vol.165, pp.300-305.
Shen, D.H., Wu, C.M. and Du, J.C. (2009) “Laboratory Investigation of Basic Oxygen Furnace Slag for Substitution of Aggregate in Porous Asphalt Mixture,” Construction and Building Materials, Vol.23, pp.453-461.
Tan, S. A., T. F. Fwa, and K. C. Chai. (2004). “Drainage Considerations for Porous Asphalt Surface Course Design,” Transportation Research Record:Journal of the Transportation Research Board, No.1868. Transportation Research Board of the National Academies, Washington, D.C., pp.142-149.
Wiles, C.C. (1996). “Municipal Solid Waste Combustion Ash:State of the Knowledge,” Journal of Hazardous Materials, Vol.47, pp. 325-334.
Xue, Y., Hou, H., Zhu, S., Zha, J. (2009) “Utilization of Municipal Solid Waste Incineration Ash in Stone Mastic Asphalt Mixture: Pavement Performance and Environmental Impact,” Construction and Building Materials, Vol.23, pp.989-996.
Yoshikuni, O. and Takshi, T. (1995). “Present Status Asphalt on Espressway in Japan,” Proceedings of 8th Road Engineering and Association of Asian and Australasia, Vol.1, pp.301-306.
校內:2019-07-22公開