簡易檢索 / 詳目顯示

研究生: 李彥儀
Lee, Yen-Yi
論文名稱: 大氣中細懸浮微粒與戴奧辛/呋喃之特徵及減量方法評估
Characterization of Atmospheric PM2.5 and Polychlorinated Dibenzo-p-dioxins and Dibenzofurans and the Assessment of Reduction Methods
指導教授: 侯文哲
Hou, Wen-Che
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 163
中文關鍵詞: 細懸浮微粒移動源監測戴奧辛呋喃(PCDD/Fs)汽車怠速化學質量平衡模型(CMB Modle)乾沉降濕沉降
外文關鍵詞: PM2.5, chemical composition, mobile monitoring, idling vehicle, CMB model, PCDD/Fs, Dry deposition, Wet deposition
相關次數: 點閱:182下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大氣中細懸浮微粒(PM2.5)已經被許多研究認定為影響人類健康之主要因子之一,尤其是在都會地區PM2.5對人體的影響更劇。再加上近年來的經濟成長與開發再加上人口高速成長,空氣汙染已經成為目前最受關注的議題。為了能夠為目前正不斷加劇的空氣品質惡化議題貢獻一份心力,吾人提出了一個涵蓋五個階段的研究計畫。
    本研究的第一階段著重於大氣中PM2.5以及戴奧辛/呋喃(PCDD/Fs)濃度的分佈探討,其內容包括從2013起到2017年之大氣中PM2.5之濃度、大氣中PM2.5之增加量與減少量之比值、PM2.5與懸浮微粒(PM10)之比值、大氣中戴奧辛總毒性當量(PCDD/Fs-TEQ)以及PM2.5與PCDD/Fs之氣粒分佈等。2013年以來每一年之PM2.5濃度如下: 28.9 (2013), 24.1 (2014), 21.4 (2015), 20.2 (2016) 與 19.9(2017) μg m-3 ,而其年平均下降之比例(PM2.5年減少量/PM2.5年增加量)為-16.69% (2013-2014), -11.08% (2014-2015), -5.75% (2015-2016) and -1.73% (2016-2017),由上述數據可以看出,雖然PM2.5年平均值逐年下降,但是其下降的幅度也是逐年減少。此外,PCDD/Fs-TEQ全台年平均濃度為0.0296 pg WHO2005 -TEQ m-3,而最濃度最高的與最低的城市分別為基隆市(0.0573 WHO2005 -TEQ m-3)和馬祖列島(0.0148 WHO2005 -TEQ m-3),而PM2.5-bound PCDD/Fs-TEQ 平均濃度則是0.6 ng WHO2005 -TEQ g-1,最高與最低的濃度則是1.335(基隆市)與0.302(高雄市)。另外,在較溫暖的季節時,PCDD/Fs氣相TEQ濃度較高。
    研究的第二階段則是偏重於分析2017年台灣四季大氣中的濕沉降變化,因為濕沉降為一主要大氣中PCDD/Fs 的去除方式,此階段的目的為提供關於大氣中戴奧辛濃度的減量方式。分析結果顯示2017年之總濕沉降PCDD/FsI-TEQ濃度沉降通量為1.85 pg WHO2005 -TEQ m-2 season-1以及四季之貢獻為2.56 (春), 2.06 (夏), 1.19 (秋) and 2.56(冬) pg WHO2005 -TEQ m-2 season-1。2017年的低降雨量,可能是造成其濕沉降通量較低的主要原因之一。年平均總PCDD/FsI-TEQ之Stot 為12300,然而2017四季之 Stot 為 13840(春)、 6540 (夏)、8280 (秋) 與 20540 (冬);雨中平均總PCDD/FsI-TEQ濃度則為0.453(春), 0.176 (夏) , 0.218 (秋) 與 0.649 (冬) pg WHO2005 -TEQ L-1。
    除了濕沉降,乾沉降也是一種有效的汙染物減量機制,因此第三階段則是著重在討論2017年總PCDD/FsI-TEQ濃度沉降在四季的變化。在2017年,台灣各地區平均乾沉降通量之總PCDD/Fs-WHO2005 -TEQ平均濃度差異很大,全台的平均值為221 pg WHO2005 -TEQ m-2 month-1,最高值出現在基隆地區的冬天(589 pg WHO2005 -TEQ m-2 month-1),而最低值出現在連江縣的秋天(57 pg WHO2005 -TEQ m-2 month-1)。而各地的總沉降通量平均值則是263 pg WHO2005 -TEQ m-2 month-1,最高值出現在基隆地區的冬天(681 pg WHO2005 -TEQ m-2 month-1),而最低值出現在連江縣的秋天(65 pg WHO2005 -TEQ m-2 month-1),而乾沉降之佔比之平均值則是82.1%,介於37.8%(宜蘭縣的冬天)與99.9%(高雄市的冬天)。
    研究的第四階段則是偏重於探討透過法規限制汽機車(巴士)怠速進而減少PM2.5之排放量。此階段的研究包括:PM2.5化學特性、上風站(背景值)與暴露站之PM2.5濃度分佈……等。採樣時間分為週末與週間以及限制法令執行前後。研究結果顯示,在限制法令執行前,於暴露處之PM2.5濃度較上風處高7%,而且透過化學質量平衡模型(CMB8.2)可確認移動源為主要的貢獻來源。在限制大型柴油車(巴士)怠速時間之法令開始執行後,在主要暴露處之PM2.5之濃度減低為接近上風處,此外所採集PM2.5中之人為生成重金屬如鋅(Zn)、鉛(Pb)、錳(Mn)、銅(Cu)、鉻(Cr)、釩(V)、鎳(Ni)與鈦(Ti)都有減少的趨勢。另外,地殼元素如:納(Na)、鎂(Mg)、鋁(Al)、鉀(K)與鈣(Ca)等之比例都大幅提高。更重要的是,透過CMB模式發現移動源的貢獻度減至33.7%-34.5%。
    第五階段的研究則是著重在探討限制汽機車之怠速時間對週界大氣以及鄰近學校之影響。採樣地點主要分為在限制法令執行前後目標學校之上風處(背景值)與校園內之暴露站,在法令頒布前,校園內之PM2.5濃度較上風處高15%,校園內NO3-與人為生成之重金屬的濃度也遠遠超過背景值,透過CMB模式的推估,移動源為此二個採樣點PM2.5之主要貢獻來源。而在法令執行後,在校園內PM2.5之濃度降至2%,此外移動源的貢獻度減至36.7%-42.8%。透過移動源的監測可以發現,各項空氣汙染指標都有顯著的下降,其下降之比例如下:PM2.5(16.5%)、超細微粒(PM0.1, 33.3%)、多環芳香烴(PAHs, 48.0%) 與黑炭(black Carbon,BC 11.5%)。第四與第五階段之數據都證實限制汽機車之怠速行為,能夠有效降低大氣中PM2.5的濃度。

    Atmospheric particles are considered to be a major problem that could lead to harmful effects on human health, especially in densely populated urban areas. Moreover, in recent decades, the flourish economy adds up with population growth, turning air quality into a bigger issue. Therefore, we proposed a research to analyze and discuss these current topics and hope to have some contribution on the local air pollution mitigation. This research is divided into five phases.
    In order to see the whole picture of the problem, a proper evaluation on the ambient levels of PM2.5 and PCDD/Fs in Taiwan would be the first steps of the research. According to the first research, from 2013 to 2017, the atmospheric PM2.5, increase/decrease ratio of PM2.5, PM2.5/PM10 ratio, total PCDD/Fs-TEQ concentrations, PM2.5-bound total PCDD/Fs-TEQ content and gas-particle partition were investigated in Taiwan. The annual average PM2.5 concentrations were 28.9, 24.1, 21.4, 20.2 and 19.9 μg m-3 in 2013, 2014, 2015, 2016 and 2017 respectively. The annual PM2.5 was decreasing but the decline magnitude was decreasing from 2013 to 2017 in Taiwan, as the average increase/decrease ratio of PM2.5 concentrations are -16.69%, -11.08%, -5.75% and -1.73% during 2013-2014, 2014-2015, 2015-2016 and 2016-2017, respectively. The annual average total PCDD/Fs-TEQ concentrations range between 0.0148 (Lienchiang Country) and 0.0573 pg WHO2005 -TEQ m-3 (Keelung City), and with an average of 0.0296 pg WHO2005 -TEQ m-3. The total PM2.5-bound PCDD/Fs-TEQ content range between 0.302 (Kaohsiung City) and 1.335 ng WHO2005 -TEQ g-1 (Keelung City), and with an average of 0.6 ng WHO2005 -TEQ g-1. A higher fraction in gas phase in warm seasons than that in cold seasons, and the gas phase are predominate in the ambient air for the total PCDD/Fs-TEQ concentrations in the four seasons.
    The second step to evaluating the seasonal variations of wet deposition fluxes of total-PCDD/Fs-WHO2005 -TEQ in ambient air in Taiwan in 2017. Results shown that the annual wet deposition fluxes of total-PCDD/Fs-WHO2005 -TEQ is 1.85 pg WHO2005 -TEQ m-2 season-1, and the seasonal distributions are 2.56, 2.06, 1.19 and 2.56 pg WHO2005 -TEQ m-2 season-1 in spring, summer, autumn and winter, respectively. Low rainfall in 2017 may cause the wet deposition lower than previous studies in Taiwan. The average Stot of total-PCDD/Fs-WHO2005 -TEQ is 12300, there are obvious seasonal variations in Stot and the values are 13840, 6540, 8280 and 20540 in spring, summer, autumn and winter, respectively. The average concentration of total-PCDD/Fs-WHO2005 -TEQ in the rain are 0.453, 0.176, 0.218 and 0.649 pg WHO2005 -TEQ L-1 in spring, summer, autumn and winter, respectively. atmospheric deposition is the major removal pathway for PCDD/Fs, the results of this study provide an evaluation for adverse effects of the PCDD/Fs exposure on human health, and to cause the concern of government to better control on air pollution.
    Since atmospheric deposition was an important mechanic for the removal of air pollutants, the phase three is focusing on the total deposition fluxes of total-PCDD/Fs-WHO2005 -TEQ in various areas in Taiwan. During 2017, the average dry deposition fluxes of total-PCDD/Fs-WHO2005 -TEQ in various areas in Taiwan range between 57 (Lienchiang County in autumn) and 589 pg WHO2005 -TEQ m-2 month-1 (Keelung City in winter), with an average of 221 pg WHO2005 -TEQ m-2 month-1. The average total deposition fluxes of total-PCDD/Fs-WHO2005 -TEQ in various areas in Taiwan range between 65 (Lienchiang County in autumn) and 681 pg WHO2005 -TEQ m-2 month-1 (Keelung City in winter), with an average of 263 pg WHO2005 -TEQ m-2 month-1. The fractions of dry deposition fluxes contribute to the total deposition fluxes range between 37.8% (Yilan County in winter) and 99.9% (Kaohsiung City in winter), with an average of 82.1%.
    The phase four is evaluating the restriction of idling vehicle as a control strategy of PM2.5 level in bus station by measuring the level of PM2.5 and chemical properties in both upwind and exposure sites for comparable data. The sampling work took place in weekend/weekday and before/after vehicle-idling-restriction applied. Originally, the exposure site showed 7% higher PM2.5 level, non-neutralized nitrate content, anthropogenic metal elements, and higher mobile source contribution evaluated by chemical mass balance (CMB8.2) model. After the prohibition of idling operation of heavy-duty diesel vehicles, the PM2.5 mass concentrations at exposure site were reduced close to the upwind site. Additionally, the nitrate content was reduced from background. Moreover, the contributions of several anthropogenic metals (Zn, Pb, Mn, Cu, Cr, V, Ni, and Ti) in PM2.5 were reduced, when the crustal element (Na, Mg, Al, K, and Ca) were much increased after restriction. Finally, the mobile contribution was also decreased to only 33.7–34.5%.
    The final part of this research is focusing on the inhibition of local emission sources by restricting the idling vehicles around a school area and evaluating the changes in surrounding atmospheric PM conditions. Two stationary sites were monitored, including a background site on the upwind side of the school and a campus site inside the school to monitor the exposure level, before and after the idling prohibition. In the base condition, the PM2.5 mass concentrations were found to increase 15% from the background, while the NO3- content had a significant increase at the campus site. The anthropogenic metal contents in PM2.5 were higher at the campus site than the background site. Mobile emissions were found to be the most likely contributor to the school hotspot area by chemical mass balance model (CMB8.2). On the other hand, the PM2.5 in the school campus fell to only 2% after idling vehicle control, when the mobile source contribution reduced from 42.8% to 36.7%. The mobile monitoring also showed the significant reductions in atmospheric PM2.5, PM0.1, polycyclic aromatic hydrocarbons (PAHs), and black carbon (BC) levels by 16.5%, 33.3%, 48.0%, and 11.5%, respectively. Consequently, the restriction of local idling emission was proven to significantly reduce PM and harmful pollutants in the hotspots around the school environment. Consequently, both latter two researches verified the restriction on local idling emission to could be one of the control strategy to mitigate the PM2.5 emission.

    Contents 摘要 I Abstract I 誌謝 IV Contents V List of Tables IX List of Figures XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 4 Chapter 2 Literatures Review 5 2.1 Particulate Matter (PM) 5  2.1.1 Characteristics of Particulate Matter 5  2.1.2 Sources of Particulate Matter 7  2.1.3 Health impact of Particulate Matter (PM) 10 2.2 PCDDs and PCDFs 12  2.2.1 Characteristics of PCDD/Fs 12  2.2.2 Toxic equivalency factor 15  2.2.3 Sources of PCDD/Fs 17  2.2.4.3 Impact of PCDD/Fs on human health 24 Chapter 3 Material and Methods 25  Research Design of The Phase One 25  3.1 Analysis of Ambient PM2.5 and PCDD/Fs in Taiwan 25  3.1.1 Sample Collection 25  3.1.2 PCDD/Fs Concentration and Calculation 26  3.1.3 Gas-Particle Partitioning 27  Research Design of The Phase Two 29  3.2 Atmospheric Wet Deposition of PCDD/Fs in Taiwan 29  3.2.1 Sample Collection 29  3.2.1 Wet deposition 30  3.2.1.1 Scavenging Rations 30  3.2.1.2 Wet Deposition 32  Research Design of The Phase Three 33  3.3 Atmospheric Wet Deposition of PCDD/Fs in Taiwan 33  3.3.1 Sample Collection 33  3.3.2 Dry depostion 34  3.3.2.1 Gas-particle partitioning simulation model 34  3.3.2.2 Atmospheric Dry Deposition of PCDD/Fs 36  Research Design of The Phase Four 37  3.4 Reduction of Atmospheric PM2.5 Levels by Restricting Buses Idling Operation around a Busy Station 37  3.4.1 Research Design 37  3.4.2 Sampling method for stationary site 39  3.4.3 Chemical composition analyses 40  3.4.4 Chemical Mass Balance Receptor Model (CMB) 42  Research Design of The Phase Five 43  3.5 Reduction of Atmospheric PM2.5 Levels by Restricting Vehicles Idling Operation around a Sensitive Area 43  3.5.1 Research Design 43  3.5.2 Sampling method for stationary site 46  3.5.3 Chemical composition analyses 47  3.5.4 Chemical Mass Balance Receptor Model (CMB) 49 Chapter 4 Results and Discussion 50  The Phase One 50  4.1 Analyzing Atmospheric PM2.5 and Polychlorinated Dibenzo-p-dioxin and Dibenzofuran 50  4.1.1 PM2.5 Concentration 50  4.1.2 PM2.5/PM10 Ratio 58  4.1.3 PCDD/Fs Concentrations 69  4.1.4 Gas-Particle Partitions 71  The Phase Two 73  4.2 Atmospheric Wet Deposition of PCDD/Fs in Taiwan 73  4.2.1 Wet deposition fluxes 73  4.2.1 Scavenging ratio 78  4.2.1 PCDD/Fs concentration in the rain 82  The Phase Three 86  4.3 Atmospheric (Dry+Wet) Deposition of PCDD/Fs in Taiwan 86  4.3.1 Dry Deposition Fluxes 86  4.3.2 Total Deposition Fluxes 92  4.3.3 Fractions of Dry and Wet Deposition 97  The Phase Four 100  4.4 Reduction of Atmospheric PM2.5 Levels by Restricting Vehicles Idling Operation Around a Busy Bus Station 100  4.4.1 PM2.5 Concentration 100  4.4.2 Ion Compositions of Atmospheric PM2.5 103  4.4.3 Metal Elements in PM2.5 112  4.4.4 Carbonaceous species in PM2.5 115  4.4.5 PM2.5 Source Apportionment 118  The Phase Five 120  4.5 Reduction of Atmospheric PM2.5 Levels by Restricting Vehicles Idling Operation Around a Sensitive Site 120  4.5.1 PM2.5 Concentration 120  4.5.2 Ion Compositions of Atmospheric PM2.5 122  4.5.3 Metal Elements in PM2.5 126  4.5.4 Carbonaceous species in PM2.5 128  4.5.5 PM2.5 Source Apportionment 130 Chapter 5 Conclusions and Suggestions 134  5.1 Conclusion 134  5.2 Suggestion 137 References 138 Curriculum Vitae 162

    Ackermann-Liebrich, U., Leuenberger, P., Schwartz, J., Schindler, C., Monn, C., Bolognini, G., Bongard, J.P., Brändli, O., Domenighetti, G., Elsasser, S. and Grize, L. (1997). Lung function and long term exposure to air pollutants in Switzerland. Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team. Am. J. Resp. Crit. Care. 155: 122-129.
    Addink, R. and Altwicker, E.R. (2001). Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from residual carbon on municipal solid waste incinerator fly ash using Na37Cl. Chemosphere 44: 1361-1367.
    Alcock, R.E. and Jones, K.C. (1996). Dioxins in the environment: a review of trend data. Environ. Sci. Technol. 30: 3133-3143.
    Allen, J.O., Dookeran, K.M., Smith, K.A., Sarofim, A.F., Taghizadeh, K. and Lafleur, A.L. (1996). Measurement of Polycyclic Aromatic Hydrocarbons Associated with Size-Segregated Atmospheric Aerosols in Massachusetts. Environ Sci Technol 30: 1023-1031.
    Allen, R.W., Gombojav, E., Barkhasragchaa, B., Byambaa, T., Lkhasuren, O., Amram, O., Takaro, T.K. and Janes, C.R. (2013). An Assessment of Air Pollution and Its Attributable Mortality in Ulaanbaatar, Mongolia. Air Quality, Atmosphere and Health 6: 137-150.
    Alves, C.A., Vicente, A., Monteiro, C., Goncalves, C., Evtyugina, M. and Pio, C. (2011). Emission of Trace Gases and Organic Components in Smoke Particles from a Wildfire in a Mixed-Evergreen Forest in Portugal. Sci Total Environ 409: 1466-1475.
    Andrews, E., Saxena, P., Musarra, S., Hildemann, L.M., Koutrakis, P., McMurry, P.H., Olmez, I. and White, W.H. (2000). Concentration and Composition of Atmospheric Aerosols from the 1995 Seavs Experiment and a Review of the Closure between Chemical and Gravimetric Measurements. J Air Waste Manage 50: 648-664.
    Asmi, E., Antola, M., Yli-Tuomi, T., Jantunen, M., Aarnio, P., Makela, T., Hillamo, R. and Hameri, K. (2009). Driver and Passenger Exposure to Aerosol Particles in Buses and Trams in Helsinki, Finland. Sci Total Environ 407: 2860-2867.
    Atkinson, R.W., Kang, S., Anderson, H.R., Mills, I.C. and Walton, H.A. (2014). Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax 69: 660-665.
    Bakeas, E., Karavalakis, G., Fontaras, G. and Stournas, S. (2011). An Experimental Study on the Impact of Biodiesel Origin on the Regulated and Pah Emissions from a Euro 4 Light-Duty Vehicle. Fuel 90: 3200-3208.
    Ballesteros, R., Guillen-Flores, J. and Martinez, J.D. (2014). Carbonyl Emission and Toxicity Profile of Diesel Blends with an Animal-Fat Biodiesel and a Tire Pyrolysis Liquid Fuel. Chemosphere 96: 155-166.
    Bartell, S.M., Longhurst, J., Tjoa, T., Sioutas, C. and Delfino, R.J. (2013). Particulate Air Pollution, Ambulatory Heart Rate Variability, and Cardiac Arrhythmia in Retirement Community Residents with Coronary Artery Disease. Environ Health Persp 121: 1135-1141.
    Bell, M.L., Dominici, F., Ebisu, K., Zeger, S.L., and Samet, J.M. (2007). Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ. Health Perspect. 115: 989-995.
    Berghmans, P., Bleux, N., Panis, L.I., Mishra, V.K., Torfs, R. and Van Poppel, M. (2009). Exposure Assessment of a Cyclist to Pm10 and Ultrafine Particles. Sci Total Environ 407: 1286-1298.
    Bidleman, T.F. (1988). Atmospheric processes. Environ. Sci. Technol. 22: 361-367.
    Bitterman, A. and Hess, D.B. (2008). Bus Rapid Transit Identity Meets Universal Design. Disability & Society 23: 445-459.
    Boldo, E., Medina, S., Le Tertre, A., Hurley, F., Mücke, H.G., Ballester, F. and Aguilera, I. (2006). Apheis: Health impact assessment of long-term exposure to PM2.5 in European cities. Eur. J. Epidemiol. 21: 449-458.
    Breitner, S., Liu, L., Cyrys, J., Brüske, I., Franck, U., Schlink, U., Leitte, A.M., Herbarth, O., Wiedensohler, A., Wehner, B., Hu, M., Pan, X.C., Wichmann, H.E. and Peters, A. (2011). Sub-Micrometer Particulate Air Pollution and Cardiovascular Mortality in Beijing, China. Sci Total Environ 409: 5196-5204.
    Brunekreef, B. and Holgate, S.T. (2002). Air Pollution and Health. The Lancet 360: 1233-1242.
    Brzuzy, L.P. and Hites, R.A. (1996). Global mass balance for polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol. 30: 1797–1804.
    Bureau of Air Quality Protection and Noise Control. (1991). Air pollution control review report of Taiwan R.O.C.-EPA.
    Burtscher, H. (2005). Physical Characterization of Particulate Emissions from Diesel Engines: A Review. J Aerosol Sci 36: 896-932.
    Castro, L.M., Pio, C.A., Harrison, R.M. and Smith, D.J.T. (1999). Carbonaceous Aerosol in Urban and Rural European Atmospheres: Estimation of Secondary Organic Carbon Concentrations. Atmospheric Environment 33: 2771-2781.
    Chandra Suryani, R., Lee, W.J., Endah Mutiara, M., Mwangi, J.K., Wang, L.C., Lin, N.H. and Chang-Chien, G.P. (2015). Atmospheric deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans at coastal and high mountain areas in Taiwan. Aerosol Air Qual. Res. 15: 1390–1411.
    Chang, M.O., Chow, J.C., Watson, J.G., Hopke, P.K., Yi, S.M. and England, G.C. (2004). Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. J. Air Waste Manage. Assoc. 54: 1494–1505.
    Chang, Y.C., Lee, W.J., Lin, S.L. and Wang, L.C. (2013). Green Energy: Water-Containing Acetone-Butanol-Ethanol Diesel Blends Fueled in Diesel Engines. Applied Energy 109: 182-191.
    Chao, M.R., Hu, C.W., Chen, Y.L., Chang-Chien, G.P., Lee, W.J., Chang, L.W., Lee, W.S. and Wu, K.Y. (2004). Approaching Gas-Particle Partitioning Equilibrium of Atmospheric PCDD/Fs with Increasing Distance from an Incinerator: Measurements and Observations on Modeling. Atmos. Environ. 38:1501-1510.
    Chen, C.L., Tang, S.T., Zhu, J. and Lin, S.L. (2017). Atmospheric PM2.5 and Polychlorinated Dibenzo-p-dioxin and Dibenzofuran in a Coastal Area of Central Taiwan. Aerosol Air Qual. Res. 17: 2829-2846.
    Chen, C.-Y., Lee, W.-J., Wang, L.-C., Chang, Y.-C., Yang, H.-H., Young, L.-H., Lu, J.-H., Tsai, Y.I., Cheng, M.-T. and Mwangi, J.K. (2017). Impact of High Soot-Loaded and Regenerated Diesel Particulate Filters on the Emissions of Persistent Organic Pollutants from a Diesel Engine Fueled with Waste Cooking Oil-Based Biodiesel. Applied Energy 191: 35-43.
    Chen, J., Qiu, S., Shang, J., Wilfrid, O.M., Liu, X., Tian, H. and Boman, J. (2014). Impact of relative humidity and water soluble constituents of PM2.5 on visibility impairment in Beijing, China. Aerosol Air Qual. Res. 14: 260–268.
    Chen, S.J., Tsai, J.H., Chang-Chien, G.P., Huang, K.L., Wang, L.C., Lin, W.Y., Lin, C.C. and Yeh, C.K.J. (2017b). Emission factors and congener-specific characterization of PCDD/Fs, PCBs, PBDD/Fs and PBDEs from an off-road diesel engine using waste cooking oil-based biodiesel blends. J. Hazard. Mater. 339: 274-280.
    Chen, Y.C., Hsu, C.Y., Lin, S.L., Chang-Chien, G.P., Chen, M.J., Fang, G.C. and Chiang, H.C. (2015). Characteristics of Concentrations and Metal Compositions for Pm2.5 and Pm2.5-10 in Yunlin County, Taiwan During Air Quality Deterioration. Aerosol Air Qual Res 15: 2571-2583.
    Cheruiyot, N.K., Lee, W.J., Mwangi, J.K., Wang, L.C., Lin, N.H., Lin, Y.C., Cao, J.J., Zhang, R.J. and Chang-Chien, G.P. (2015). An Overview: Polycyclic Aromatic Hydrocarbon Emissions from the Stationary and Mobile Sources and in the Ambient Air. Aerosol Air Qual Res 15: 2730-2762.
    Cheruiyot, N.K., Lee, W.J., Yan, P., Mwangi, J.K., Wang, L.C., Gao, X., Lin, N.H. and Chang-Chien, G.P. (2016). An Overview of PCDD/F Inventories and Emission Factors from Stationary and Mobile Sources: What We Know and What is Missing. Aerosol Air Qual. Res. 16: 2965-2988.
    Chi, K.H., Hung, N.T., Lin, C.Y., Wang, S.H., Ou-Yang, C.F., Lee, C.T. and Lin, N.H. (2016). Evaluation of atmospheric PCDD/Fs at two high-altitude stations in Vietnam and Taiwan during Southeast Asia biomass burning. Aerosol Air Qual. Res. 16: 2706–2715.
    Chow, J.C. (1995). Measurement Methods to Determine Compliance with Ambient Air-Quality Standards for Suspended Particles. J Air Waste Manage 45: 320-382.
    Chow, J.C., Yang, X., Wang, X., Kohl, S.D., Hurbain, P.R., Chen, L.A. and Watson, J.G. (2015). Characterization of ambient PM10 bioaerosols in a California agricultural town. Aerosol Air Qual. Res. 15: 1433–1447.
    Chu, S.-H. (2004). Pm2. 5 Episodes as Observed in the Speciation Trends Network. Atmospheric Environment 38: 5237-5246.
    Correa, O., Raun, L., Rifai, H., Suarez, M., Holsen, T. and Koenig, L. (2006). Depositional flux of polychlorinateddibenzo-p-dioxins and polychlorinated dibenzofurans inan urban setting. Chemosphere 64: 1550-1561.
    da Rocha, G.O., Lopes, W.A., Pereira, P.A.D., Vasconcellos, P.D., Oliveira, F.S., Carvalho, L.S., Conceicao, L.D.S. and de Andrade, J.B. (2009). Quantification and Source Identification of Atmospheric Particulate Polycyclic Aromatic Hydrocarbons and Their Dry Deposition Fluxes at Three Sites in Salvador Basin, Brazil, Impacted by Mobile and Stationary Sources. Journal of the Brazilian Chemical Society 20: 680-692.
    DeBell, L.J., Talbot, R.W., Dibb, J.E., Munger, J.W., Fischer, E.V. and Frolking, S.E. (2004). A Major Regional Air Pollution Event in the Northeastern United States Caused by Extensive Forest Fires in Quebec, Canada. Journal of Geophysical Research-Atmospheres 109.
    Deshmukh, D.K., Deb, M.K., Tsai, Y.I. and Mkoma, S.L. (2011). Water Soluble Ions in Pm2. 5 and Pm1 Aerosols in Durg City, Chhattisgarh, India. Aerosol Air Qual. Res 11: 696-708.
    Deutsch, F., Vankerkom, J., Janssen, L., Janssen, S., Bencs, L., Van Grieken, R., Fierens, F., Dumont, G. and Mensink, C. (2008). Modelling Concentrations of Airborne Primary and Secondary Pm10 and Pm2.5 with the Beleuros-Model in Belgium. Ecol Model 217: 230-239.
    Dockery, D.W. and Pope, C.A. (1996). Epidemiology of acute health effects: summary of time-series studies. Particles in our air: Concentrations and health effect. Harvard University Press, Cambridge, MA, USA 123-147.
    Donnelly, J.R., Munslow, W.D., Mitchum, R.K. and Sovocool, G.W. (1987). Correlation of Structure with Retention Index for Chlorinated Dibenzo-p-dioxins. J. Chromatogr. 392: 51–63.
    Dons, E., Panis, L.I., Van Poppel, M., Theunis, J. and Wets, G. (2012). Personal Exposure to Black Carbon in Transport Microenvironments. Atmospheric Environment 55: 392-398.
    Duarte-Davidson, R., Clayton, P., Coleman, P., Davis, B.J., Halsall, C.J., Harding-Jones, P., Pettit, K., Woodfield, M.J. and Jones, K.C. (1994). Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in urban air and deposition in the United Kingdom. Environ. Sci. Pollut. Res. 1: 262-270.
    Eitzer, B.D. and Hites, R.A. (1989). Atmospheric transport and deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol. 23:1396-1401.
    Fang, S.H. and Chen, H.W. (1996). Air quality and pollution control in Taiwan. Atmos. Environ. 30: 735-741.
    Fisk, W. J. and Chan, W. R. (2017). Health benefits and costs of filtration interventions that reduce indoor exposure to PM2.5 during wildfires. Indoor Air 27: 191-204.
    Frank, L.D., Sallis, J.F., Conway, T.L., Chapman, J.E., Saelens, B.E. and Bachman, W. (2006). Many pathways from land use to health: associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. Plann. Assoc. 72: 75-87.
    Fujii, Y., Mahmud, M., Tohno, S., Okuda, T. and Mizohata, A. (2016). A Case Study of Pm2.5 Characterization in Bangi, Selangor, Malaysia During the Southwest Monsoon Season. Aerosol Air Qual Res 16: 2685-2691.
    Ghosh, S., Gupta, T., Rastogi, N., Gaur, A., Misra, A., Tripathi, S.N., Paul, D., Tare, V., Prakash, D., Bhattu, D., Dwivedi, A., Kaul, D.S., Dalai, R. and Mishra, S.K. (2014). Chemical characterization of summertime dust events at Kanpur: insight into the sources and level of mixing with anthropogenic emissions. Aerosol Air Qual. Res. 14: 879-891.
    Guerzoni, S., Rossini, P., Molinaroli, E., Rampazzo, G.and Raccanelli, S. (2004). Measurement of atmosphericdeposition of polychlorinated dibenzo-p-dioxins anddibenzofurans in the Lagoon of Venice, Italy.Chemosphere 54: 1309-1317.
    Hagler, G.S.W., Thoma, E.D. and Baldauf, R.W. (2010). High-Resolution Mobile Monitoring of Carbon Monoxide and Ultrafine Particle Concentrations in a near-Road Environment. J Air Waste Manage 60: 328-336.
    Hale, M.D., Hileman, F.D., Mazer, T., Shell, T.L., Noble, R.W. and Brooks, J.J. (1985). Mathematical Modeling of Temperature Programmed Capillary Gas Chromatographic Retention Indexes for Polychlorinated Dibenzofurans. Anal. Chem. 57: 640–648.
    Han, X. and Naeher, L.P. (2006). A Review of Traffic-Related Air Pollution Exposure Assessment Studies in the Developing World. Environ Int 32: 106-120.
    Hanzel, V.A. and Durham, N.C. (2005). Peer Review of the Chemical Mass Balance Model (Epa-Cmb8. 2) and Documentation Us Environmental Protection Agency.
    Harrison, R.M., Deacon, A.R., Jones, M.R. and Appleby, R.S. (1997). Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (UK). Atmos. Environ. 31: 4103-4117.
    Hashimoto, S., Wakimoto, T. and Tatsukawa, R. (1990). PCDDs in the sediments accumulated about 8120 years ago from Japanese coastal areas. Chemosphere 21: 825–835.
    He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z. and Chen, G. (2012). Spatial and Seasonal Variability of Pm 2.5 Acidity at Two Chinese Megacities: Insights into the Formation of Secondary Inorganic Aerosols. Atmospheric Chemistry and Physics 12: 1377-1395.
    Heo, J.B., Hopke, P.K. and Yi, S.M. (2009). Source Apportionment of Pm2.5 in Seoul, Korea. Atmospheric Chemistry and Physics 9: 4957-4971.
    Hiester, E., Böhm, R., Eynck, P., Gerlach, A., Mükder, W. and Ristow, H. (1993). Long term monitoring of PCDD, PCDF, and PCB in bulk deposition samples. Organohalogen Compd. 12: 147-150.
    Hildemann, L.M., Klinedinst, D.B., Klouda, G.A., Currie, L.A. and Cass, G.R. (1994). Sources of Urban Contemporary Carbon Aerosol. Environ Sci Technol 28: 1565-1576.
    Ho, K.F., Lee S.C., Chan, C.K., Yu, J. C., Chow J.C. and Yao, X.H. (2003). Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmos. Environ. 37: 31–39.
    Horstmann, M. and McLachlan, M.S. (1997). Sampling bulk deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans. Atmos. Environ. 31: 2977-2982.
    Hsu, C.Y., Chiang, H.C., Chen, M.J., Chuang, C.Y., Tsen, C.M., Fang, G.C., Tsai, Y.I., Chen, N.T., Lin, T.Y., Lin, S.L. and Chen, Y.C. (2017). Ambient Pm2.5 in the Residential Area near Industrial Complexes: Spatiotemporal Variation, Source Apportionment, and Health Impact. Sci Total Environ 590: 204-214.
    Hsu, C.Y., Chiang, H.C., Lin, S.L., Chen, M.J., Lin, T.Y. and Chen, Y.C. (2016). Elemental Characterization and Source Apportionment of Pm10 and Pm2.5 in the Western Coastal Area of Central Taiwan. Sci Total Environ 541: 1139-1150.
    Hsu, S.C., Liu, S.C., Huang, Y.T., Chou, C.C.K., Lung, S.C.C., Liu, T.H., Tu, J.Y. and Tsai, F.J. (2009). Long-Range Southeastward Transport of Asian Biosmoke Pollution: Signature Detected by Aerosol Potassium in Northern Taiwan. Journal of Geophysical Research-Atmospheres 114.
    Hu, M., Jia, L., Wang, J. and Pan, Y. (2013). Spatial and Temporal Characteristics of Particulate Matter in Beijing, China Using the Empirical Mode Decomposition Method. Sci Total Environ 458-460: 70-80.
    Hu, M., Peng, J., Sun, K., Yue, D., Guo, S., Wiedensohler, A. and Wu, Z. (2012). Estimation of Size-Resolved Ambient Particle Density Based on the Measurement of Aerosol Number, Mass, and Chemical Size Distributions in the Winter in Beijing. Environmental Science and Technology 46: 9941-9947.
    Hu, M.T., Chen, S.J., Lai, Y.C., Huang, K.L., Chang-Chien, G.P. and Tsai, J.H. (2009). Characteristics of polychlorinated dibenzo-p-dioxins/dibenzofuran from joss paper burned in Taiwanese temples. Aerosol Air Qual. Res. 9: 369–377.
    Huang, C.J., Chen, K.S., Lai, Y.C., Wang, L.C. and Chang-Chien, G.P. (2011b). Wet deposition of polychlorinated dibenzo-p-dioxins/dibenzofuran in a rural area of Taiwan. Aerosol Air Qual. Res. 11: 732-748.
    Huang, X.H.H., Bian, Q.J., Louie, P.K.K. and Yu, J.Z. (2014). Contributions of Vehicular Carbonaceous Aerosols to Pm 2.5 in a Roadside Environment in Hong Kong. Atmospheric Chemistry and Physics 14: 9279-9293.
    Hung, H., Blanchard, P., Poole, G., Thibert, B. and Chiu, C.H. (2002). Measurement of Particle-Bound Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs) in Arctic Air at Alert, Nunavut, Canada. Atmos. Environ. 36: 1041–1050.
    IARC, 1997. International Agency for Research on Cancer. Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans. vol. 69. IARC, Lyon, France.
    IPCC (2001). Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis 446: 881.
    Jaeckels, J.M., Bae, M.-S. and Schauer, J.J. (2007). Positive Matrix Factorization (Pmf) Analysis of Molecular Marker Measurements to Quantify the Sources of Organic Aerosols. Environ Sci Technol 41: 5763-5769.
    Jahn, H.J., Schneider, A., Breitner, S., Eissner, R., Wendisch, M. and Kramer, A. (2011). Particulate matter pollution in the megacities of the Pearl River Delta, China - A systematic literature review and health risk assessment. Int. J. Hyg. Environ. Health 214: 281–295.
    Jin, Q.J., Yang, Z.L. and Wei, J.F. (2016). Seasonal Responses of Indian Summer Monsoon to Dust Aerosols in the Middle East, India, and China. J. Clim. 29: 6329-6349.
    Jin, X.M., Yang, L.J., Du, X.Z. and Yang, Y.P. (2017). Transport Characteristics of Pm2.5 inside Urban Street Canyons: The Effects of Trees and Vehicles. Building Simulation 10: 337-350.
    Jurado, E., Jaward, F., Lohmann, R., Jones, K., Simo´, R. and Dachs, J. (2005). Wet deposition of persistent organic pollutants to the global oceans. Environ. Sci. Technol. 39: 2426–2435.
    Karner, A.A., Eisinger, D.S. and Niemeier, D.A. (2010). Near-Roadway Air Quality: Synthesizing the Findings from Real-World Data. Environmental Science and Technology 44: 5334-5344.
    Kaupp, H. and McLachlan, M.S. (1998). Atmospheric particle size distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) and their implications for wet and dry deposition. Atmos. Environ. 33: 85-95.
    Kaur, S., Nieuwenhuijsen, M.J. and Colvile, R.N. (2005). Pedestrian Exposure to Air Pollution Along a Major Road in Central London, Uk. Atmospheric Environment 39: 7307-7320.
    Khan, M.A.H., Jenkin, M.E., Foulds, A., Derwent, R.G., Percival, C.J. and Shallcross, D.E. (2017). A Modeling Study of Secondary Organic Aerosol Formation from Sesquiterpenes Using the Stochem Global Chemistry and Transport Model. Journal of Geophysical Research-Atmospheres 122: 4426-4439.
    Kim, E.J., Oh, J.E. and Chang, Y.S. (2003). Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Sci. Total Environ. 311: 177-189.
    Koester, C.J. and Hites, R.A. (1992). Wet and dry deposition of chlorinated dioxins and furans. Environ. Sci. Technol. 26: 1375-1382.
    Kouimtzis, T.H., Samara, C., Voutsa, D., Balafoutis, C.H. and Müller, L. (2002). PCDD/Fs and PCBs in air borne particulate matter of the greater Thessaloniki area, N. Greece. Chemosphere 47: 193-205.
    Krewski, D., Burnett, R.T., Goldberg, M.S., Hoover, K., Siemiatychi, J., Abrahamowicz, M. and White, W.H. (2000). Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality. Special Report, Health Effects Institute: Cambridge, MA.
    Kunzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M., Horak, F., Puybonnieux-Texier, V., Quenel, P., Schneider, J., Seethaler, R., Vergnaud, J.C. and Sommer, H. (2000). Public-Health Impact of Outdoor and Traffic-Related Air Pollution: A European Assessment. Lancet 356: 795-801.
    Langrish, J.P., Li, X., Wang, S., Lee, M.M.Y., Barnes, G.D., Miller, M.R., Cassee, F.R., Boon, N.A., Donaldson, K., Li, J., Li, L., Mills, N.L. and Newby, D.E. (2012). Reducing Personal Exposure to Particulate Air Pollution Improves Cardiovascular Health in Patients with Coronary Heart Disease. 1990: 367-372.
    Lee, K.L., Lee, W.J., Mwangi, J.K., Wang, L.C., Gao, X. and Chang-Chien, G.P. (2016). Atmospheric PM2.5 and depositions of polychlorinated dibenzo-p-dioxins and dibenzofurans in Kaohsiung area, southern Taiwan. Aerosol Air Qual. Res. 16: 1775-1791.
    Lee, S.J., Ale, D., Chang, Y.S., Oh, J.E. and Shin, S.K. (2008). Seasonal and particle size-dependent variations in gas/particle partitioning of PCDD/Fs. Environ. Pollut. 153: 215–222.
    Lee, Y.Y., Wang, L.C., Zhu, J., Wu, J.L. and Lee, K.L. (2018). Atmospheric PM2.5 and Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Taiwan. Aerosol Air Qual. Res. 18: 762-779.
    Lee, Y.Y., Wang, L.C., Zhu, J., Wu, J.L. and Lee, K.L. (2018). Atmospheric PM2.5 and Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Taiwan. Aerosol Air Qual. Res. 18: 762-779.
    Leitte, A.M., Schlink, U., Herbarth, O., Wiedensohler, A., Pan, X.C., Hu, M., Richter, M., Wehner, B., Tuch, T., Wu, Z., Yang, M., Liu, L., Breitner, S., Cyrys, J., Peters, A., Wichmann, H.E. and Franck, U. (2011). Size-Segregated Particle Number Concentrations and Respiratory Emergency?? Room Visits in Beijing, China. Environ Health Persp 119: 508-513.
    Li, P., Xin, J., Wang, Y., Wang, S., Shang, K., Liu, Z., Li, G., Pan, X., Wei, L. and Wang, M. (2013). Time-Series Analysis of Mortality Effects from Airborne Particulate Matter Size Fractions in Beijing. Atmospheric Environment 81: 253-262.
    Liao, H.-T., Chou, C.C.K., Chow, J.C., Watson, J.G., Hopke, P.K. and Wu, C.-F. (2015). Source and Risk Apportionment of Selected Vocs and Pm2.5 Species Using Partially Constrained Receptor Models with Multiple Time Resolution Data. Environ Pollut 205: 121-130.
    Ligocki, M.P. and Pankow, J.F. (1989). Measurements of the Gas Particle Distributions of Atmospheric Organic-Compounds. Environ Sci Technol 23: 75-83.
    Ligocki, M.P., Leuenberger, C. and Pankow, J.F. (1985b). Trace organic compounds in rain—III. Particle scavenging of neutral organic compounds. Atmos. Environ. 19: 1619-1626.
    Lin, J.J. (2002). Characterization of the Major Chemical Species in Pm 2.5 in the Kaohsiung City, Taiwan. Atmospheric Environment 36: 1911-1920.
    Lin, T.H. (2001). Long-range transport of yellow sand to Taiwan in Spring 2000: observed evidence and simulation. Atmos. Environ. 35: 5873-5882.
    Lin, X., Huang, Q., Chen, T., Li, X., Lu, S., Wu, H., Yan, J., Zhou, M. and Wang, H. (2014). PCDD/F and PCBz emissions during start-up and normal operation of a hazardous waste incinerator in China. Aerosol Air Qual. Res. 14: 1142-1151.
    Liu, L., Breitner, S., Schneider, A., Cyrys, J., Brüske, I., Franck, U., Schlink, U., Marian Leitte, A., Herbarth, O., Wiedensohler, A., Wehner, B., Pan, X., Wichmann, H.-E. and Peters, A. (2013). Size-Fractioned Particulate Air Pollution and Cardiovascular Emergency Room Visits in Beijing, China. Environ Res 121: 52-63.
    Liu, X.D., Van Espen, P., Adams, F., Cafmeyer, J. and Maenhaut, W. (2000). Biomass Burning in Southern Africa: Individual Particle Characterization of Atmospheric Aerosols and Savanna Fire Samples. Journal of Atmospheric Chemistry 36: 135-155.
    Liu, X.J., Li, C.M., Tu, H., Wu, Y.Y., Ying, C., Huang, Q., Wu, S., Xie, Q.H., Yuan, Z.K. and Lu, Y.N. (2016). Analysis of the Effect of Meteorological Factors on Pm2.5-Associated Pahs During Autumn-Winter in Urban Nanchang. Aerosol Air Qual Res 16: 3222-3229.
    Liu, Z., Hu, B., Ji, D., Wang, Y., Wang, M. and Wang, Y. (2015). Diurnal and Seasonal Variation of the Pm2.5 Apparent Particle Density in Beijing, China. Atmospheric Environment 120: 328-338.
    Lohmann, R. and Jones, K.C. (1998). Dioxins and furans in air and deposition: a review of levels, behaviour and processes. Sci. Total Environ.219: 53-81.
    Lohmann, R., Green, N.J. and Jones, K.C. (1999). Detailed studies of the factors controlling atmospheric PCDD/F concentrations. Environ. Sci. Technol. 33: 4440–4447.
    Long, C.M., Suh, H.H., Catalano, P.J. and Koutrakis, P. (2001). Using Time- and Size-Resolved Particulate Data to Quantify Indoor Penetration and Deposition Behavior. Environ Sci Technol 35: 2089-2099.
    Lu, H.Y., Lin, S.L., Mwangi, J.K., Wang, L.C. and Lin, H.Y. (2016b). Characteristics and Source Apportionment of Atmospheric Pm2.5 at a Coastal City in Southern Taiwan. Aerosol Air Qual Res 16: 1022-1034.
    Marcazzan, G.M., Ceriani, M., Valli, G. and Vecchi, R. (2003). Source Apportionment of Pm10 and Pm2.5 in Milan (Italy) Using Receptor Modelling. Sci Total Environ 317: 137-147.
    Marcazzan, G.M., Vaccaro, S., Valli, G. and Vecchi, R. (2001). Characterization of PM2.5and PM10 particulate matter in the ambient air of Milan (Italy). Atmos. Environ. 35: 4639-4650.
    Marinković, N., Pašalić, D., Ferenčak, G., Gršković, B. and Stavljenić Rukavina A. (2010). Dioxins and human toxicity. Arh. Hig. Rada. Toksikol. 61: 445-453.
    Martins, L.D., da Silva, C.R., Solci, M.C., Pinto, J.P., Souza, D.Z., Vasconcellos, P., Guarieiro, A.L.N., Guarieiro, L.L.N., Sousa, E.T. and de Andrade, J.B. (2012). Particle Emission from Heavy-Duty Engine Fuelled with Blended Diesel and Biodiesel. Environmental Monitoring and Assessment 184: 2663-2676.
    McCreanor, J., Cullinan, P., Nieuwenhuijsen, M.J., Stewart-Evans, J., Malliarou, E., Jarup, L., Harrington, R., Svartengren, M., Han, I., Ohman-Strickland, P., Chung, K.F. and Zhang, J.F. (2007). Respiratory Effects of Exposure to Diesel Traffic in Persons with Asthma. New Engl. J. Med. 357: 2348-2358.
    McDonnell, W.F., Nishino-Ishikawa, N., Petersen, F.F., Chen, L.H. and Abbey, D.E. (2000). Relationships of mortality with the fine and coarse fractions of long-term ambient PM10 concentrations in nonsmokers. J. Expo. Sci. Env. Epid. 10: 427.
    Meehl, G.A., Arblaster, J.M. and Collins, W.D. (2008). Effects of Black Carbon Aerosols on the Indian Monsoon. J. Clim. 21: 2869-2882.
    Menon, S., Hansen, J., Nazarenko, L. and Luo, Y.F. (2002). Climate Effects of Black Carbon Aerosols in China and India. Science 297: 2250-2253.
    Mkoma, S.L., da Rocha, G.O., Regis, A.C.D., Domingos, J.S.S., Santos, J.V.S., de Andrade, S.J., Carvalho, L.S. and de Andrade, J.B. (2014). Major Ions in Pm2.5 and Pm10 Released from Buses: The Use of Diesel/Biodiesel Fuels under Real Conditions. Fuel 115: 109-117.
    Moon, H.B., Lee, S.J., Choi, H.G. and Ok, G. (2005). Atmospheric deposition of polychlorinated dibenzo-p-dioxins(PCDDs) and dibenzofurans (PCDFs) in urbanand suburban areas of Korea. Chemosphere 58: 1525-1534.
    Nawrot, T.S., Torfs, R., Fierens, F., De Henauw, S., Hoet, P.H., Van Kersschaever, G., De Backer, G. and Nemery, B. (2007). Stronger Associations between Daily Mortality and Fine Particulate Air Pollution in Summer Than in Winter: Evidence from a Heavily Polluted Region in Western Europe. J Epidemiol Commun H 61: 146-149.
    Neuer-Etscheidt, K., Nordsieck, H.O., Liu, Y., Kettrup, A. and Zimmermann, R. (2006). PCDD/F and other micropollutants in MSWI crude gas and ashes during plant start-up and shut-down processes. Environ. Sci. Technol. 40: 342-349.
    Ni, Y., Zhang, H., Fan, S., Zhang, X., Zhang, Q. and Chen, J. (2009). Emissions of PCDD/Fs from municipal solid waste incinerators in China. Chemosphere 75: 1153-1158.
    Ogura, I., Masunaga, S. and Nakanishi, J. (2001).Atmospheric deposition of polychlorinated dibenzo-p-dioxins,polychlorinated dibenzofurans, and dioxin-likepolychlorinated biphenyls in the Kanto Region, Japan.Chemosphere 44: 1473-1487.
    Oh, J.E., Lee, K.T., Lee, J.W. and Chang, Y.S. (1999). The evaluation of PCDD/Fs from various Korean incinerators. Chemosphere 38: 2097–2108.
    Okuda, T., Okamoto, K., Tanaka, S., Shen, Z., Han, Y. and Huo, Z. (2010). Measurement and Source Identification of Polycyclic Aromatic Hydrocarbons (Pahs) in the Aerosol in Xi'an, China, by Using Automated Column Chromatography and Applying Positive Matrix Factorization (Pmf). Sci Total Environ 408: 1909-1914.
    Organization, W.H. (2006). Who Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment. Geneva: World Health Organization: 1-22.
    Pandis, S.N., Harley, R.A., Cass, G.R. and Seinfeld, J.H. (1992). Secondary Organic Aerosol Formation and Transport. Atmos Environ a-Gen 26: 2269-2282.
    Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., de la Rosa, J.D., Mantilla, E., Sanchez de la Campa, A., Querol, X., Pey, J., Amato, F. and Moreno, T. (2011). Source Apportionment of Pm10 and Pm2.5 at Multiple Sites in the Strait of Gibraltar by Pmf: Impact of Shipping Emissions. Environ Sci Pollut R 18: 260-269.
    Pankow, J.F. (1987). Review and Comparative Analysis of the Theories on Partitioning between the Gas and Aerosol Particulate Phases in the Atmosphere. Atmos. Environ. 21: 2275-2283.
    Pankow, J.F. (1994). An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 28: 185-188.
    Pankow, J.F. and Bidleman, T.F. (1991). Effects of temperature, TSP and percent non-exchangeable material in determining the gas-particle partitioning of organic compounds. Atmos. Environ. 25: 2241–2249.
    Pankow, J.F. and Bidleman, T.F. (1992). Interdependence of the slopes and intercepts from log-log correlations of measured gas-particle paritioning and vapor pressure—I. theory and analysis of available data. Atmos. Environ. 26: 1071–1080.
    Pattinson, W., Longley, I. and Kingham, S. (2014). Using Mobile Monitoring to Visualise Diurnal Variation of Traffic Pollutants across Two near-Highway Neighbourhoods. Atmospheric Environment 94: 782-792.
    p-dioxins and Dibenzofurans (PCDD/Fs) in the Ambient Air of Northern China. Aerosol Air Qual. Res. 17: 2010–2016.
    Penner, J.E., Dickinson, R.E. and Oneill, C.A. (1992). Effects of Aerosol from Biomass Burning on the Global Radiation Budget. Science 256: 1432-1434.
    Peters, J., Theunis, J., Van Poppel, M. and Berghmans, P. (2013). Monitoring Pm10 and Ultrafine Particles in Urban Environments Using Mobile Measurements. Aerosol Air Qual Res 13: 509-522.
    Pipalatkar, P., Khaparde, V.V., Gajghate, D.G. and Bawase, M.A. (2014b). Source Apportionment of Pm 2.5 Using a Cmb Model for a Centrally Located Indian City. Aerosol Air Qual. Res 14: 1089-1105.
    Pongpiachan, S. (2016). Incremental Lifetime Cancer Risk of Pm2.5 Bound Polycyclic Aromatic Hydrocarbons (Pahs) before and after the Wildland Fire Episode. Aerosol Air Qual Res 16: 2907-2919.
    Pope III, C.A. and Dockery, D.W. (2006). Health Effects of Fine Particulate Air Pollution: Lines That Connect. J Air Waste Manage 56: 709-742.
    Pope III, C.A., Ezzati, M. and Dockery, D.W. (2009). Fine-particulate air pollution and life expectancy in the United States. New Engl. J. Med. 360: 376-386.
    Pope, C.A., Ezzati, M. and Dockery, D.W. (2013). Fine Particulate Air Pollution and Life Expectancies in the United States: The Role of Influential Observations. J Air Waste Manage 63: 129-132.
    Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K. and Thurston, G.D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA-J. Am. Med. Assoc. 287: 1132-1141.
    Pope, III.C.A. and Dockery D.W. (2006). Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manag. Assoc. 56: 709-742.
    Prange, J.A., Gaus, C., Päpke, O. and Müller, J.F. (2002). Investigations into the PCDD contamination of topsoil, river sediments and kaolinite clay in Queensland, Australia. Chemosphere 46: 1335–1342.
    Prange, J.A., Gaus, C., Weber, R., Päpke, O. and Müller, J.F. (2003). Assessing forest fire as a potential PCDD/F source in Queensland, Australia. Environ. Sci. Technol. 37: 4325–4329.
    Qin, S., Liu, F., Wang, C., Song, Y. and Qu, J. (2015). Spatial-Temporal Analysis and Projection of Extreme Particulate Matter (Pm10 and Pm2.5) Levels Using Association Rules: A Case Study of the Jing-Jin-Ji Region, China. Atmospheric Environment 120: 339-350.
    Rakowska, A., Wong, K.C., Townsend, T., Chan, K.L., Westerdahl, D., Ng, S., Močnik, G., Drinovec, L. and Ning, Z. (2014). Impact of Traffic Volume and Composition on the Air Quality and Pedestrian Exposure in Urban Street Canyon. Atmospheric Environment 98: 260-270.
    Redfern, F.M., Lee, W.J., Yan, P., Mwangi, J.K., Wang, L.C. and Shih, C.H. (2017). Overview and perspectives on emissions of polybrominated diphenyl ethers on a global basis: Evaporative and fugitive releases from commercial PBDE mixtures and emissions from combustion sources. Aerosol Air Qual. Res. 17: 1117-1131.
    Ren, M., Peng P., Zhang, S., Yu, L., Zhang, G., Mai, B., Sheng, G. and Fu, J. (2007). Atmospheric deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in Guangzhou, China. Atmos. Environ. 41: 592-605.
    Riley, E.A., Banks, L., Fintzi, J., Gould, T.R., Hartin, K., Schaal, L., Davey, M., Sheppard, L., Larson, T., Yost, M.G. and Simpson, C.D. (2014). Multi-Pollutant Mobile Platform Measurements of Air Pollutants Adjacent to a Major Roadway. Atmospheric Environment 98: 492-499.
    Rodrigues, M.C., Guarieiro, L.L.N., Cardoso, M.P., Carvalho, L.S., da Rocha, G.O. and de Andrade, J.B. (2012). Acetaldehyde and Formaldehyde Concentrations from Sites Impacted by Heavy-Duty Diesel Vehicles and Their Correlation with the Fuel Composition: Diesel and Diesel/Biodiesel Blends. Fuel 92: 258-263.
    Saldarriaga -Norena, H., Hernandez -Mena, L., Ramirez -Muniz, M., Carbajal -Romero, P., Cosio -Ramirez, R. and Esquive l-Hernandez, B. (2009). Characterization of Trace Metals of Risk to Human Health in Airborne Particulate Matter (Pm2.5) at Two Sites in Guadalajara, Mexico. J Environ Monitor 11: 887-894.
    Schauer, J.J., Kenski, M.D., Willis, D.R. (2005). Peer Review of the Chemical Mass Balance Model. U.S. Environmental Protection Agency.
    Schmid, O., Karg, E., Hagen, D.E., Whitefield, P.D. and Ferron, G.A. (2007). On the Effective Density of Non-Spherical Particles as Derived from Combined Measurements of Aerodynamic and Mobility Equivalent Size. J Aerosol Sci 38: 431-443.
    Schwartz, J., Dochery, D.W. and Neas, L.M. (1996). Is daily mortality associated specifically with fine particles? J. Air Waste Manage. 46: 927-939.
    Shandilya, K.K. and Kumar, A. (2010). Morphology of Single Inhalable Particle inside Public Transit Biodiesel Fueled Bus. Journal of Environmental Sciences 22: 263-270.
    Sharma, S. and Patil, K.V. (2016). Emission Scenarios and Health Impacts of Air Pollutants in Goa. Aerosol Air Qual Res 16: 2474-2487.
    Shen, Z., Cao, J., Arimoto, R., Han, Z., Zhang, R., Han, Y., Liu, S., Okuda, T., Nakao, S. and Tanaka, S. (2009). Ionic Composition of Tsp and Pm 2.5 During Dust Storms and Air Pollution Episodes at Xi'an, China. Atmospheric Environment 43: 2911-2918.
    Sheu, H.L., Lee, W.J., Su, C.C., Chao, H.R. and Fan, Y.C. (1996). Dry deposition of polycyclic aromatic hydrocarbons in ambient air. J. Environ. Eng. 122: 1101-1109.
    Shih, M., Lee, W.S., Chang Chien, G.P., Wang, L.C., Hung, C.Y. and Lin, K.C. (2006). Dry deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air. Chemosphere 62: 411-416.
    Sillapapiromsuk, S., Chantara, S., Tengjaroenkul, U., Prasitwattanaseree, S. and Prapamontol, T. (2013). Determination of Pm10 and Its Ion Composition Emitted from Biomass Burning in the Chamber for Estimation of Open Burning Emissions. Chemosphere 93: 1912-1919.
    Sofowote, U.M., Su, Y., Dabek-Zlotorzynska, E., Rastogi, A.K., Brook, J. and Hopke, P.K. (2015). Sources and Temporal Variations of Constrained Pmf Factors Obtained from Multiple-Year Receptor Modeling of Ambient Pm2.5 Data from Five Speciation Sites in Ontario, Canada. Atmospheric Environment 108: 140-150.
    Srogi, K. (2008). Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: a review. Environ. Chem. Lett. 6: 1-28.
    Steinfeld, J.I. (1998). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Environment: Science and Policy for Sustainable Development 40: 26.
    Tao, J., Zhang, L.M., Cao, J.J. and Zhang, R.J. (2017). A Review of Current Knowledge Concerning Pm2.5 Chemical Composition, Aerosol Optical Properties and Their Relationships across China. Atmospheric Chemistry and Physics 17: 9485-9518.
    Thai, A., McKendry, I. and Brauer, M. (2008). Particulate Matter Exposure Along Designated Bicycle Routes in Vancouver, British Columbia. Sci Total Environ 405: 26-35.
    Tsai, M.-Y., Hoek, G., Eeftens, M., de Hoogh, K., Beelen, R., Beregszászi, T., Cesaroni, G., Cirach, M., Cyrys, J., De Nazelle, A., de Vocht, F., Ducret-Stich, R., Eriksen, K., Galassi, C., Gražuleviciene, R., Gražulevicius, T., Grivas, G., Gryparis, A., Heinrich, J., Hoffmann, B., Iakovides, M., Keuken, M., Krämer, U., Künzli, N., Lanki, T., Madsen, C., Meliefste, K., Merritt, A.-S., Mölter, A., Mosler, G., Nieuwenhuijsen, M.J., Pershagen, G., Phuleria, H., Quass, U., Ranzi, A., Schaffner, E., Sokhi, R., Stempfelet, M., Stephanou, E., Sugiri, D., Taimisto, P., Tewis, M., Udvardy, O., Wang, M. and Brunekreef, B. (2015). Spatial Variation of Pm Elemental Composition between and within 20 European Study Areas — Results of the Escape Project. Environ Int 84: 181-192.
    Tseng, C.Y., Lin, S.L., Mwangi, J.K., Yuan, C.S. and Wu, Y.L. (2016). Characteristics of Atmospheric Pm2.5 in a Densely Populated City with Multi-Emission Sources. Aerosol Air Qual Res 16: 2145-2158.
    Tseng, Y.J., Mi, H.H., Hsieh, L.T., Liao, W.T. and ChangChien, G.P. (2014). Atmospheric deposition modeling of polychlorinated dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls in the ambient air of southern Taiwan. Part II. wet depositions and total deposition fluxes. Aerosol Air Qual. Res. 14: 1966–1985.
    Tseng, Y.J., Mi, H.H., Hsieh, L.T., Liao, W.T. and Chang-Chien, G.P. (2014). Atmospheric deposition modeling of polychlorinated dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls in the ambient air of southern Taiwan. Part II. Wet depositions and total deposition fluxes. Aerosol Air Qual. Res. 14: 1966–1985.
    Tsuang, B.J. and Chao, C.P. (1999). Application of circuit model for Taipei City PM10 simulation. Atmos. Environ. 33: 1789-1801.
    Tunno, B.J., Shields, K.N., Lioy, P., Chu, N., Kadane, J.B., Parmanto, B., Pramana, G., Zora, J., Davidson, C., Holguin, F. and Clougherty, J.E. (2012). Understanding Intra-Neighborhood Patterns in Pm2.5 and Pm10 Using Mobile Monitoring in Braddock, Pa. Environ Health-Glob 11: 76.
    Turpin, B.J. and Huntzicker, J.J. (1995). Identification of Secondary Organic Aerosol Episodes and Quantitation of Primary and Secondary Organic Aerosol Concentrations During Scaqs. Atmospheric Environment 29: 3527-3544.
    US EPA. (2017). Learn about Dioxin. United States Environmental Protection Agency, Washington DC, USA Available at: https://www.epa.gov/dioxin/learn-about-dioxin accessed June 30.
    USEPA (2014). Air Quality Index –a Guide to Air Quality and Your Health. EPA-456/F-14-002.
    USEPA. (2000). Exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Washington DC, U.S. EPA, p. 264.
    USEPA. (2003). Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds National Academy Sciences (NAS) Review Draft, Washington, DC.
    van den Berg, M., Birnbaum, L.S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N. and Peterson, R.E. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 93: 223-241.
    Vicente, A., Alves, C., Monteiro, C., Nunes, T., Mirante, F., Evtyugina, M., Cerqueira, M. and Pio, C. (2011). Measurement of Trace Gases and Organic Compounds in the Smoke Plume from a Wildfire in Penedono (Central Portugal). Atmospheric Environment 45: 5172-5182.
    Wang, B., Lee, S.C. and Ho, K.F. (2006). Chemical Composition of Fine Particles from Incense Burning in a Large Environmental Chamber. Atmospheric Environment 40: 7858-7868.
    Wang, H., Tian, M., Li, X., Chang, Q., Cao, J., Yang, F., Ma, Y. and He, K. (2015). Chemical Composition and Light Extinction Contribution of Pm2. 5 in Urban Beijing for a 1-Year Period. Aerosol Air Qual Res 15: 2200-2211.
    Wang, W.W., Cui, K.P., Zhao, R., Lee, W.J., Yan, P. (2018). Sensitivity analysis for atmospheric scavenging ratio of total PCDD/Fs-TEQ wet deposition: case of Wuhu city, China. Aerosol Air Qual. Res. 18: 719–733.
    Wang, Y., Wang, M., Zhang, R., Ghan, S.J., Lin, Y., Hu, J., Pan, B., Levy, M., Jiang, J.H. and Molina, M.J. (2014). Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model. P Natl Acad Sci USA 111: 6894-6899.
    Wang, Y.F., Hou, H.C., Li, H.W., Lin, L.F., Wang, L.C., Chang-Chien, G.P. and You, Y.S. (2010). Dry and Wet Depositions of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in the Atmosphere in Taiwan. Aerosol Air Qual. Res. 10: 378-390.
    Watanabe, S., Kitamura, K. and Nagahashi, M. (1998). Effects of dioxins on human health: a review. J. Emidemiol. 9: 1-13.
    Watson, J.G., Chow, J.C., Lu, Z., Fujita, E.M., Lowenthal, D.H., Lawson, D.R. and Ashbaugh, L.L. (1994). Chemical Mass Balance Source Apportionment of Pm10 During the Southern California Air Quality Study. Aerosol Sci Tech 21: 1-36.
    Watson, J.G., Zhu, T., Chow, J.C., Engelbrecht, J., Fujita, E.M. and Wilson, W.E. (2002). Receptor Modeling Application Framework for Particle Source Apportionment. Chemosphere 49: 1093-1136.
    Wayne, W.S., Clark, N.N., Nine, R.D. and Elefante, D. (2004). A Comparison of Emissions and Fuel Economy from Hybrid-Electric and Conventional-Drive Transit Buses. Energ Fuel 18: 257-270.
    Welsch-Pausch, K., McLachlan, M.S. and Umlauf, G. (1995). Determination of the principal pathways of polychlorinated dibenzo-p-dioxins and dibenzofurans to Lolium multiflorum (Welsh Ray Grass). Environ. Sci. Technol. 29: 1090–1098.
    Wu, Y.L., Lin, L.F., Hsieh, L.T., Wang, L.C. and Chang-Chien, G.P. (2009). Atmospheric dry deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans in the vicinity of municipal solid waste incinerators. J. Hazard. Mater. 162: 521-529.
    Xing, J., Cui, K., Tang, H., Lee, W.J., Wang, L.C., Zhu, J. and Huang, Q. (2017). Part II: PM2.5 and Polychlorinated Dibenzo-
    Yamasaki, H., Kuwata, K. and Miyamoto, H. (1982). Effects of ambient temperature on aspects of airborne polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 16: 189–194.
    Zhang, F.Y., Xu, J., Wang, L., Lu, J.M., Li, Y.H., Ni, Y., Wang, W.Y. and Kraff, T. (2016). Air Quality, Patterns and Otolaryngology Health Effects of Air Pollutants in Beijing in 2013. Aerosol Air Qual Res 16: 1464-1472.
    Zhang, Q.F., Fischer, H.J., Weiss, R.E. and Zhu, Y.F. (2013). Ultrafine Particle Concentrations in and around Idling School Buses. Atmospheric Environment 69: 65-75.
    Zhang, R., Tao, J., Ho, K.F., Shen, Z., Wang, G., Cao, J., Liu, S., Zhang, L. and Lee, S.C. (2012). Characterization of Atmospheric Organic and Elemental Carbon of Pm2. 5 in a Typical Semi-Arid Area of Northeastern China. Aerosol Air Qual Res 12: 792-802.
    Zhao, R., Cui, K.P., Wang, W.W., Wang, L.C., Wang, Y.F. (2018). Sensitivity analyses for the atmospheric dry deposition of total PCDD/Fs-TEQ for Handan and Kaifeng cities, China. Aerosol Air Qual. Res. 18: 719–733.
    Zheng, M., Cass, G.R., Schauer, J.J. and Edgerton, E.S. (2002). Source Apportionment of Pm2.5 in the Southeastern United States Using Solvent-Extractable Organic Compounds as Tracers. Environ Sci Technol 36: 2361-2371.
    Zheng, X.B., Xu, X.J., Yekeen, T.A., Zhang, Y.L., Chen, A.M., Kim, S.S., Dietrich, K.N., Ho, S.M., Lee, S.A., Reponen, T. and Huo, X. (2016). Ambient Air Heavy Metals in Pm2.5 and Potential Human Health Risk Assessment in an Informal Electronic-Waste Recycling Site of China. Aerosol Air Qual Res 16: 388-397.
    Zhou, Y. and Levy, J.I. (2007). Factors Influencing the Spatial Extent of Mobile Source Air Pollution Impacts: A Meta-Analysis. Bmc Public Health 7: 89.
    Zhu, J., Tang, H.Y., Xing, J., Lee, W.J., Yan, P. and Cui, K. (2017a). Atmospheric Deposition of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Two Cities of Southern China. Aerosol Air Qual. Res. 17: 1798-1810.
    Zhu, J., Xing, J., Tang, H., Lee, W.J., Yan, P., Cui, K. and Huang, Q. (2017). Atmospheric deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans in two cities of northern China. Aerosol Air Qual. Res. 17: 2027-2040.
    Zhu, Y.F., Hinds, W.C., Kim, S., Shen, S. and Sioutas, C. (2002). Study of Ultrafine Particles near a Major Highway with Heavy-Duty Diesel Traffic. Atmospheric Environment 36: 4323-4335.
    Zhu, Z.Y., Ji, Y.Q., Zhang, S.J., Zhao, J.B. and Zhao, J. (2016). Phthalate Ester Concentrations, Sources, and Risks in the Ambient Air of Tianjin, China. Aerosol Air Qual Res 16: 2294-2301.
    Zwack, L.M., Paciorek, C.J., Spengler, J.D. and Levy, J.I. (2011a). Characterizing Local Traffic Contributions to Particulate Air Pollution in Street Canyons Using Mobile Monitoring Techniques. Atmospheric Environment 45: 2507-2514.
    Zwack, L.M., Paciorek, C.J., Spengler, J.D. and Levy, J.I. (2011b). Modeling Spatial Patterns of Traffic-Related Air Pollutants in Complex Urban Terrain. Environ Health Persp 119: 852-859.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE