| 研究生: |
曾宗亮 Tseng, Zong-Liang |
|---|---|
| 論文名稱: |
氧化鋅基薄膜應用於可撓式透明導電膜及有機發光二極體 ZnO Based Thin Films Applied to Flexible Transparent Conductive Films and Organic Light Emitting Diodes |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 氧化鋅 、透明導電膜 、有機發光二極體 、軟性電子 |
| 外文關鍵詞: | AZO, ZnO, TCO, OLED, flexible |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在光電元件的應用上,透明導電基板的研發為重要的課題。其中ITO (氧化銦錫)為最廣為使用的透明導電薄膜,然而銦在地殼的含量有限,導致ITO 的價格較為昂貴。並且銦本身具有毒性,會造成人體與環境的傷害。為了克服ITO以上的缺點,近年來氧化鋅基(ZnO-based)材料取代銦錫氧化物(ITO)材料做為透明導電薄膜電極的研究漸趨熱絡。相對於ITO透明導電薄膜,氧化鋅材料所構成元素地殼含量豐富且無毒性因而相對低成本,並且更能在還原氣氛下使用。
首先我們以射頻磁控濺鍍法製作ZnO參雜Al(AZO)透明導電薄膜,成功於低溫低功率下於無鹼玻璃基板與塑膠基板上成長具有低電阻率與高穿透率之透明導電薄膜。在不使用基板加溫與退火處理過程,我們所製作的氧化鋅基可撓式透明導電薄膜,依然有著低電阻及高可見光穿透度。在本文裡,成長於可撓式塑膠PES基板的氧化鋅摻鋁其機電特性將被討論,尤其受機械性質傷害後其光電特性的變化與穩定度也是本文探討的重點之一。藉由簡單的彎曲測試,分為face in和face out兩彎曲方向去做探討,AZO透明導電薄膜所能承受face out彎曲能力較佳,盼有助於未來在可攜式元件上的設計與應用。
除此之外, 本文首創利用單電洞元件去鑑別OLED中透明陽極及有機層界面的行為,AZO與商用ITO的單電洞元件被分別製作,並比較其電洞注入效率之優劣,對照兩種陽極材料分別製作的OLED元件,說明陽極材料電洞注入效率對元件電性及發光效率之影響,並從其推論可能的物理機制。隨後我們濺鍍不同膜厚AZO於玻璃基板上當作OLED的導電透明基板。有加熱基板與無加熱基板的不同膜厚AZO特性與其所製作的OLED特性亦將同時被探討。
最後提出利用低電阻率、高透光率的新型透明導電ZnO參雜Ti(TZO)透明導電氧化物薄膜提升OLED透明陽極之功函數。儘管所製作的TZO透明導電膜,導電度與透明度皆略劣於AZO,然而利用其所製作的OLED元件確有這優異的啟動電壓與電流效率。希望利用TZO能夠藉以改善OLED元件電性及發光效率,期望對有機光電顯示器的應用發展有助益。
Transparent conducting substrate is an important research and development topic in applications of organic light emitting devices. Although ITO (indium tin oxide) is probably the most successful transparent conductive oxide (TCO) thin film, however, indium is a relatively scarce element in the earth. Thus, the cost for ITO production is more expensive than that of others. Besides, the toxic nature of indium could be hazardous to human and environment. For the purpose of overcoming these ITO basically drawbacks, new type ZnO-based materials have been actively studied by many research groups in recent years. The transparent conductive ZnO-based thin films are investigated as an alternative to ITO films. In contrast to ITO materials, the ZnO material is more stable in reduction ambient, nontoxic, and the abundance of its constituent elements makes it available at a low cost. Therefore, ZnO-based thin films have attracted much attention as the transparent electrode.
Highly transparent conducting Al-doped zinc oxide (AZO) films were deposited on a non-alkali glass substrate and flexible poly (ether sulfone) (PES) substrates by an RF magnetron sputtering system at room temperature and under low sputtering power. Without substrate heating or post-annealing treatment, ZnO-based flexible electrodes with low resistivity and high transmittance were prepared. In this work, electromechnical study was conducted on the performance of Al-doped zinc oxide film deposited on a flexible PES substrate. The change in electrical and optical properties by using a simple model method with face-out (FO) bending and face-in (FI) bending was proposed to understand the failure mechanisms. The results of bending test show that the face-out direction enables AZO films deposited on PES substrates to tolerate greater mechanical bending.
Then, a hole-only device was used to explore charge behavior at the interface between anode materials and the organic layer. Hole-only devices with AZO film and commercial ITO anodes were used to examine the efficiency of hole injection and its effect on performance of OLEDs. OLED devices with AZO and ITO anode materials, respectively, were also fabricated to verify experimental results. The dependence of hole injection and OLED performance on the anode material was determined. We also reported that AZO films of various thicknesses were prepared by sputtering on glass substrates for use as transparent anodes of OLED devices. The effect of AZO film thickness with and without heated substrates on the performance of OLEDs based on AZO anodes was investigated.
Finally, we present Ti-doped ZnO (TZO) as transparent anodes of OLEDs for high work function. Our results demonstrated that the resistivity and transparency of TZO was slightly worse than those of AZO, but TZO showed a superior performance to AZO due to its high work function. These new transparent conducting thin films are helpful for the development and practical applications of organic electronic devices.
1. C. W. Tang , S. A. VanSlyke, Applied Physics Letters, 51, 913, 1987.
2. C. W. Tang, S. A. VanSlyke, C. H. Chen, Journal of Applied Physics, 65, 3610, 1989.
3. S. A. Van Slyke, C. H. Chen, C. W. Tang, Applied Physics Letters, 69, 2160, 1996.
4. B. W. D'Andrade, S. R. Forrest, Advanced Materials, 16, 1585, 2004.
5. L. S. Hung, C. W. Tang, M. G. Mason, Applied Physics Letters, 70, 152, 1997.
6. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, Journal of Applied Physics, 86, 1688, 1999.
7. S. T. Lee, Z. Q. Gao, L. S. Hung, Applied Physics Letters, 75, 1404, 1999.
8. F. Li, H. Tang, J. Shinar, O. Resto, S. Z. Weisz, Applied Physics Letters, 70, 2741, 1997.
9. H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A. M. Hor, H. Aziz, Applied Physics Letters, 78, 2595, 2001.
10. H. You, Y. Dai, Z. Zhang, D. Ma, Journal of Applied Physics, 101, 026105, 2007.
11. H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, M.-R. Yang, Z.-L. Tseng, Journal of Alloys and Compounds, 479, 520, 2009.
12. D.-D. Zhang, J. Feng, Y.-F. Liu, Y.-Q. Zhong, Y. Bai, Y. Jin, G.-H. Xie, Q. Xue, Y. Zhao, S.-Y. Liu, H.-B. Sun, Applied Physics Letters, 94, 223306, 2009.
13. H. Jiang, Y. Zhou, B. S. Ooi, Y. Chen, T. Wee, Y. L. Lam, J. Huang, S. Liu, Thin Solid Films, 363, 25, 2000.
14. C. Ganzorig, M. Fujihira, Applied Physics Letters, 77, 4211, 2000.
15. J. Kido, Y. Iizumi, Applied Physics Letters, 73, 2721, 1998.
16. S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock, J. C. Scott, Applied Physics Letters, 70, 2067, 1997.
17. S. Y. Kim, J.-L. Lee, Applied Physics Letters, 87, 232105, 2005.
18. H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, Thin Solid Films, 516, 5664, 2008.
19. H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, R.-C. Chang, Journal of the Electrochemical Society, 154, J105, 2007.
20. S. T. Lee, Z. Q. Gao, L. S. Hung, Appl. Phys. Lett. 75, 1404, 1999.
21. A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W. R. Salaneck, Adv. Mater. 10, 859, 1998.
22. H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, D. B. Chrisey, Appl. Phys. Lett. 76, 259, 2000.
23. X. Jiang, F. L. Wong, M. K. Fung, S. T. Lee, Appl. Phys. Lett. 83, 1875, 2003.
24. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270,1998.
25. J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, S. J. Park, Adv. Mater. 18, 2720, 2006.
26. R. L. Hoffman, B. J. Norris, J. F. Wager, Appl. Phys. Lett. 82, 733, 2003.
27. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, J. Appl. Phys. 93, 1624, 2003.
28. S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, A. K. Y. Jen, Appl. Phys. Lett. 92, 253301, 2008.
29. J. C. Bernede, Y. Berredjem, L. Cattin, M. Morsli, Appl. Phys. Lett. 92, 083304, 2008.
30. H. Kim, A. Piqu’e, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, Thin Solid Films 377, 798,2000.
31. X. T. Hao, L. W. Tan, K. S. Ong, F. Zhu, J. Cryst. Growth 287, 44, 2006.
32. T.W. Kim, D.C. Choo , Y.S. No, W.K. Choi, E.H. Choi, Appl. Surf. Sci. 253, 1917, 2006.
33. X. T. Hao, F. R. Zhu, K. S. Ong, L. W. Tan, Semicond. Sci. Technol. 21, 48, 2006.
34. H. Kim, J.S. Horwitz, W.H. Kim, A.J. Makinen, Z.H., Kafafi, D.B. Chrisey, Thin Solid Films 420 –421, 539, 2002.
35. Y. Hamada, C. Adachi, T. Tsutsui, S. Saito, "Organic electroluminescent devices with bright blue emission," Optoelectronics Tokyo, 7, 83, 1992.
36. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Applied Physics Letters, 75, 4, 1999.
37. L. J. Rothberg, A. J. Lovinger, "Status of, prospects for organic electroluminescence," Journal of Materials Research, 11, 3174, 1996.
38. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 395, 151, 1998.
39. M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature, 403, 750, 2000.
40. 陳金鑫 and 黃孝文, OLED: 有機電激發光材料與元件: 五南圖書出版股份有限公司, 2005.
41. O. Dulub, L. A. Boatner, U. Diebold, Surface Science 519, 201, 2002.
42. O. Dulub, U. Diebold, G. Kresse, Phys. Rev. Lett. 90, N1, 016102, 2003.
43. A. Mang, K. Reimann, St. Rübenacke, Solid State Commun. 94, 251, 1995.
44. K.Huemmer, Phys. Status Solidi. B 556, 249, 1973.
45. Z. K. Tang, G. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270, 1998.
46. N. Ashkenov, B. N. Mbenkum, C. Bundesmann, J. Appl. Phys. 93, N11, 126, 2003.
47. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, Appl. Phys. Lett. 68, 403, 1996.
48. K. Vanheusden, C. H. Seager, D. R. Tallant, J. Caruso, M. J. Hampden-Smith, T .T. Kodas, J. Lumin, Appl. Phys. Lett. 75, 11, 1997.
49. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, W. C. Harsch, Solid State Commun. 105, 399, 1998.
50. A. F. Kohan, G. Ceder, D. Morgan, C. G. Van de Walle, Phys. Rev. B 61, 15019, 2000.
51. C. G. Van de Walle, Phys. Rev. Lett. 85, 1012, 2000.
52. C. G. Van deWalle, Physica B 308, 899, 2001.
53. A. F. Kohan, G. Ceder, D. Morgan, C. G. Van de Walle, Phys. Rev. B 61, 15019, 2000.
54. D. C. Look, B. Claflin, Ya. I. Alivov, S. J. Park, Phys. Stat. Sol. N10, 2203, 2004.
55. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830, 2002.
56. A. Tsukazaki, A Ohtomi, T Onuma, M. Ohtani, etc, Nature Materials 4, 41, 2005.
57. K. Minegishi, Y. Koiwai, K. Kikuchi, Jpn. J. Appl. Phys. 36, 1453, 1997.
58. T. Yamamoto, H. Yoshida, Jpn. J. Appl. Phys. Part 2 38, 166, 1999.
59. A. Teke, U. Ozgur, S. Dogan, X, Gu, H. Morkoc, B. Nemeth, J. Nause, H. O. Everitt, Phys. Rev. B 70, 195207, 2004.
60. U. Ozgur, Ya. I.Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301, 2005.
61. B. K. Meyer, H. Alves, D. M. Hofmann, etc., Phys. Stat. Sol. B 241, 231, 2004.
62. Y.P. Varshni, Physica (Amsterdam) 34, 149, 1967.
63. L.Wang, N.C. Giles, J. Appl. Phys. 94, 973, 2003.
64. D.S. Ginley, C. Bright. MRS Bull. 25, 15, 2000.
65. T. Minami, MRS Bull. 25, 38, 2000.
66. T. Minami, Semicond. Sci. Technol. 20, 35, 2005.
67. S. Bose, S. Ray, A.K. Barua, J. Phys. D: Appl. Phys. 29, 1873, 1996.
68. T. Minami, T. Miyata, T. Yamamoto, J. Vac. Sci. Technol. A, 17, 1822, 1999.
69. N. Malkomes, M. Vergohl, B. Szyszka, J. Vac. Sci. Technol. A 19, 414, 2001.
70. B. Szyszka, Thin Solid Films 351, 164, 1999.
71. N. R. Aghamalyan, E.A. Kafadaryan, R.K. Hovsepyan, S. I. Petrosyan, Semi. Sci. Technol. 20, 80, 2005.
72. G. A. Hirata, J. McKittrick, J. Siqueiros, O. A. Lopez, T. Cheeks, O. Contreras, J. Y. Yi, J. Vac. Sci. Technol. A 14, 791, 1996.
73. N. F. Mott, “Metal-Insulator Transition”, Tailor, Francis, London,, 1974.
74. V.Bhosle, A. Tiwari, J. Narayan, Appl. Phys. Lett. 88, 032106, 2006.
75. O. Nakagawara, Y. Kishimoto, H. Seto, Y. Koshido, Appl. Phys. Lett. 89, 091904, 2006.
76. J. Hupkes, B. Rech, S. Calnan, O. Kluth, U. Zastrow, H. Siekmann, M. Wuttig, Thin Solid Films 502, 286, 2006.
77. J. Springer, B. Rech, W. Reetz, J. Muller, M. Vanecek, Solar Energy Materials & Solar Cells 85, 1, 2005.
78. J. Song, K. Kim, S. Park, T. Seong, Appl. Phys. Lett. 83, 479, 2003.
79. J. Lim, D. Hwang, H. Kim, J. Oh, J. Yang, R. Navamathavan, S. Park, Appl. Phys. Lett. 85, 6191, 2004.
80. J. Lim, D. Hwang, H. Kim, J. Oh, J. Yang, R. Navamathavan, Seong-Ju Park, Appl. Phys. Lett. 85, 6191, 2004.
81 S. Calnan, A. N. Tiwari, Thin Solid Films, 518, 1839, 2010.
82 D. H. Zhang, H. L. Ma, Applied Physics A, 62, 487, 1996.
83 G. Haacke, Journal of Applied Physics, 47, 9, 1976.
84 K. F. Berggren, B. E. Sernelius, L. Engström, Physical Review B, 30, 3240, 1984.
85 I. Hamberg, C. G. Granqvist, K. -F. Berggren, B. E. Sernelius, L. Engström, Physical Review B, 30, 3240, 1984.
86 V. Khranovskyy, U. Grossner, V. Lazorenko, G. V. Lashkarev, B. G. Svensson, R. Yakimova, Superlattices Microstructure, 39, 275, 2006.
87 J. I. Oda, J. I. Nomoto, T. Miyata, T. Minami, Thin Solid Films, 518, 2984, 2010.
88R. S. Krishnan, R. Strinivasan, S. Devanarayanan, Thermal Expansion of crystals (Pergamon, Oxford, 1979).
89. Y. Leterrier, L. Médico, F. Demarco, J. A. E. Månson, U. Betz, M. F. Escolá, M. K. Olsson, F. Atamny. Thin Solid Films, 460, 156, 2004.
90. S. Grego, J. Lewis, E. Vick, D. Temple. Thin Solid Films, 515, 4745, 2007.
91. D. R. Cairns, R. P. Witte II, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, Appl. Phys. Lett., 76, , 1425, 2000.
92. E. Fortunato, P. Nunes, A. Marques, D. Costa, H. Águas, I. Ferreira, M. E. V. sa Costa, M. H. Godinho, P. L. Almedia, J. P. Borges, R. Martins, Adv. Eng. Mater, 4, 610, 2002.
93. Z.L. Pei, X.B. Zhang, G.P. Zhang, J. Gong, C. Sun, R.F. Huang, L.S. Wen, Thin Solid Films, 497,20, 2006.
94. Z. Suo, E. Y. Ma, H. Gleskova, S. Wagner, Appl. Phys. Lett., 74, 1177, 1999.
95. R. Navamathavan, K. K. Kim, D. K. Hwang, S. J. Park, J. H. Hahn, T. G. Lee, G.S. Kim, Applied Surface Science, 253, 464, 2006.
96. K. A. Sierros, D. A. Banerjee, N. J. Morris, D. R. Cairns, I. Kortidis, G. Kiriakidis, Thin Solid Films, 519, 325, 2010.
97 H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, D. B. Chrisey, Appl. Phys. Lett. 76, 259, 2000.
98 H. Kim, A. Piqu’e, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, Thin Solid Films 377, 798, 2000.
99 X. T. Hao, L. W. Tan, K. S. Ong, F. Zhu, J. Cryst. Growth 287, 44, 2000.
100 T.W. Kim, D.C. Choo , Y.S. No, W.K. Choi, E.H. Choi, Appl. Surf. Sci. 253, 1917, 2006.
101 X. T. Hao, F. R. Zhu, K. S. Ong, L. W. Tan, Semicond. Sci. Technol. 21, 48, 2006.
102 H. Kim, J.S. Horwitz, W.H. Kim, A.J. Makinen, Z.H., Kafafi, D.B. Chrisey, Thin Solid Films 420, 539, 2002.
103 P. W. M. Blom, M. J. M. de Jong, M. G. van Munster, Phys. Rev. B 55, R656, 1997.
104 T. Y. Chu, O. K. Songa, Appl. Phys. Lett. 90, 203512, 2007.
105 C. H. Liao, M. T. Lee, C. H. Tsai, C. H. Chen, Appl. Phys. Lett. 86, 203507, 2005.
106 K. S. Yook, S. O. Jeon, J. Y. Lee, Thin Solid Films 517, 6109, 2009.
107 V. Khranovskyy, U. Grossner, V. Lazorenko, G. V. Lashkarev, B. G. Svensson, R. Yakimova, Superlattices Microstruct. 39, 275, 2006.
108 G. Haacke, J. Appl. Phys. 47, 4086, 1976.
107 T. Matsushima, Y. Kinoshita, H. Murata, Appl. Phys. Lett. 91, 253504, 2007.
108 J. W. Ma, Z. Liang, C. Jin, X. Y. Jiang, Z. L. Zhang, Solid State Commun. 149, 214, 2009.
109 M. A. Lampert, P. Mark, Current Injection in Solids (Academic, New York, 1970.
110 S. T. Lee, Z. Q. Gao, L. S. Hung, Appl. Phys. Lett. 75, 1404, 1999.
111 H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, D. B. Chrisey, Appl. Phys. Lett. 76, 259, 2000.
112. B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, X.-Z. Zhao, J. Appl. Phys. 101, 033713, 2007.
113. H. Tanaka, K. Ihara, T. Miyata, H. Sato, T. Minami, J. Vac. Sci. Technol. A 22, 1757, 2004.
114. Y. Igasaki, H. Saito, J. Appl. Phys. 70, 3613, 1991.
115. K. Ellmer, R. Cebulla, R. Wendt, Thin Solid Films 317, 413, 1998.
116. T. Yamamoto, T. Shiosaki, A. Kawabata, J. Appl. Phys. 51, 3113, 1980.
117. G. X. Liang, P Fan, X. M. Cai,D. P. Zhang, Z. H Zheng, J. Electron. Mater. 40, 267, 2011
118. L. Sagalowicz, G.R. Fox, J. Mater. Res. 14, 1876, 1999.
119. G. Sanon, R. Rup, A. Mansingh, Thin Solid Films 190, 287, 1990.
120. E. Burstein, Phys. Rev. 93, 632, 1954.
121. T. S. Moss Proc. Phys. Soc. London, Sect. B 67, 775(1954.
122. S. Liang, X. Bi, J. Appl. Phys. 104, 113533, 2008.
123. C. Jonda, A. B. R. Mayer, U. Stolz, A. Elschner, A. Karbach, J. Mater. Sci. 35, 5645, 2000.
124. H. Kim, J. S. Horwitz, W. H. Kim, S. B. Qadri, Z. H. Kafafi, Appl. Phys. Lett. 83, 3809, 2003.
125. J.J. Lu, Y.M. Lu, S.I. Tasi, T.L. Hsiung, H.P. Wang, L.Y. Jang, Opt. Mater. 29, 1548, 2007.
126. S. S. Lin, J. L. Huang, D. F. Lii, Mater. Chem. Phys. 90, 22, 2005.
127. Y. M. Lu, C. M. Chang, S. I. Tsai, T. S. Wey, Thin Solid Films 447, 56, 2004.
128. Y. R. Park, K. J. Kim, Solid State Commu. 123, 147, 2002.
129. S. S. Lin, J. L. Huang, D. F. Lii, Surf. Coat. Tech. 190, 372, 2005.
130. R. Ondo-Ndong, G. Ferblantier, M. Kalfioui, A. Boyer, A. Foucaran, J. Cryst. Growth 255, 130, 2003.
131. R.C. Chang, S.Y. Chu, C.S. Hong, Y.T. Chuang, Surf. Coat. Tech. 200, 3235, 2006.
132. G. Sanon, R. Rup, A. Mansingh, Thin Solid Films 190, 287, 1989.
133. S.K. So, W.K. Choi, C.H. Cheng, L.M. Leung, C.F. Kwong, Appl. Phys. A 68, 447, 1999.
134. Y. Han, D. Kim, J.S. Cho, Y.W. Beag, S.K. Koh, V.S. Chernysh, J. Appl. Phys. 97, 024910, 2005.
校內:2018-01-21公開