簡易檢索 / 詳目顯示

研究生: 廖韋綱
Liao, Wei-Kang
論文名稱: 製程方式對氮化鋁薄膜體聲波諧振器諧振頻率影響之研究
The Effect of Processing on the Resonant Frequencies of AlN Thin Film Bulk Acoustic Wave Resonators
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 92
中文關鍵詞: AlN壓電薄膜FBARMBVD模型反應式射頻磁控濺鍍
外文關鍵詞: AlN piezoelectric thin film, FBAR, MBVD model, RF magnetron reactive sputter
相關次數: 點閱:92下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分析薄膜體聲波諧振器(thin film bulk acoustic wave resonator,FBAR)及濾波器頻寬改善之方法,方法是以兩階段沉積不同膜厚之壓電層於同一試片上,以達到不同諧振頻率之諧振器,進而完成改善濾波器頻寬之研究。本研究的FBAR元件分別採用背向蝕刻結構的FBAR元件,而FBAR的結構為在矽基板上,沉積下電極鉑、壓電層氮化鋁、上電極鋁。空腔採用ICP乾式蝕刻,蝕刻遮罩使用100nm的Al,而AlN壓電層是由射頻磁控濺鍍機沉積而成,所謂兩階段沉積是第一階段AlN壓電層沉積在基板溫度225℃,第二階段沉積為了配合舉離法製程,使AlN壓電層在室溫下成長。待製作完成,使用網路分析儀進行元件的頻率響應分析,根據量測結果藉由ADS模擬軟體萃取MBVD等效電路的元件數值。本研究製作出上電極為圓形、矩形與正方形的FBAR元件,量測結果其諧振頻率落在3.89~3.91間;兩階段沉積壓電層的正方形FBAR元件落在3.830 GHz,其中心頻率高於預期。根據量測結果運算求得元件輸入阻抗、阻抗相位與Q值,其穿透損耗太大且Q值不如預期。本研究製作FBAR元件良率太低且壓電層結晶品質不佳、上電極Al容易剝落、背向蝕刻空腔小時殘留之Si基板過厚,而空腔大時ICP蝕刻擊穿等問題。

    Thin film bulk acoustic resonators(FBARs) are promising for communication applications higher than 2.4 GHz for its extremely low loss and compatible process with CMOS. In this thesis, we proposed a two-step-deposition method by using RF magnetron reactive sputter to fabricate the piezoelectric layers of FBARS with different thicknesses to provide different resonant frequencies, which are stringent for practical filter design with wide bandwidth. The structure of the FBARs from top to bottom were Al/AlN/Pt/ SiNx/Si with etched cavity in the back. A thin AlN film was deposited with heated substrate at 225℃ during the RF sputteirng process of first step. The second AlN thin film on the first thin film with covered photoresist for pattern defining was then re-sputtered without heating the substrate. The S-parameters measured by using GSG probe and network analyzer indicated that the resonant frequency of 3.90 GHz and anti-resonant frequency of 3.95 GHz were obtained for the FBAR of first-step deposition with estimated 1.02μm for the AlN thickness, and the resonant frequency of 3.83 GHz and anti-resonant frequency of 3.91 GHz for the FBAR with estimated 2.04μm for the AlN thickness combined of the first- and second-step deposition. The analysis of MBVD model showed that effective electromechanical coupling coefficient and quality factor for the first-step FBAR were 3.123% and 203, respectively, and 5.048% and 415 for the FBAR after the second-step deposition.

    目錄 摘要 I 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 研究動機 1 第二章 相關理論與研究現況 4 2-1 壓電薄膜材料 5 2-1-1 壓電效應 6 2-1-2 聲波運動方程式與聲波阻抗 8 2-1-3 壓電方程式 13 2-1-4 氮化鋁壓電薄膜 20 2-2 薄膜體聲波諧振器 23 2-2-1 FBAR元件結構 23 2-2-2 FBAR元件工作原理 27 2-2-3 FBAR元件研究現況 28 2-2-4 MBVD等效電路模型 29 2-3 薄膜體聲波諧振濾波器 34 2-3-1 FBAR濾波器工作原理 35 2-3-2 頻率響應分析相關定義 38 2-3-3 FBAR濾波器研究現況 38 第三章 FBAR製程與濾波器設計 40 3-1 微影製程原理 40 3-1-1 蝕刻法 41 3-1-2 舉離法 41 3-2 薄膜製程原理 42 3-2-1 電漿輔助化學氣相沉積 43 3-2-2 電子束蒸鍍 44 3-2-3 反應式射頻磁控濺鍍 46 3-3 蝕刻製程原理 48 3-3-1 感應耦合式電漿蝕刻 49 第四章 研究方法與實驗規劃 50 4-1 光罩圖案設計 50 4-1-1 FBAR元件設計 51 4-1-2 FBAR濾波器設計 51 4-2 FBAR元件及濾波器製作 56 4-2-1 RCA清洗 57 4-2-2 製作蝕刻遮罩 57 4-2-3 PECVD沉積氮化矽 59 4-2-4 蒸鍍下電極Pt 59 4-2-5 切割晶圓及清洗試片 60 4-2-6 濺鍍低溫壓電層 61 4-2-7 濺鍍室溫壓電層 62 4-2-8 濺鍍上電極Al 63 4-2-9 電極斷裂之預防 65 4-2-10 濺鍍負載上電極 65 4-2-11 ICP蝕刻空腔 66 4-3 量測分析 66 4-3-1 元件頻率響應分析 67 4-3-2 MBVD等效電路模型建立 67 4-4 實驗程序規劃 68 4-4-1 不同諧振頻率FBAR製作 68 4-4-2 研製寬頻FBAR濾波器 69 4-4-3 FBAR元件及濾波器製作與困難修正 69 第五章 實驗結果與討論 71 5-1 元件製作 71 5-1-1 壓電層AlN薄膜結晶狀況 71 5-1-2 上電極Al沉積瑕疵 74 5-1-3 蝕刻遮罩無法抵擋ICP蝕刻 75 5-2 頻率響應分析與MBVD等效電路模型建立 77 5-2-1 FBAR元件 77 第六章 結論、困難、挑戰與未來方向 86 參考文獻 88 表目錄 表1- 1 5GHZ無線區域網路標準 1 表1- 2陶瓷濾波器、SAW濾波器、FBAR濾波器比較 3 表2- 1各種材料與空氣的聲波阻抗值 13 表2- 2壓電參數的定義 17 表2- 3氮化鋁的材料特性 22 表2- 4 FBAR支撐層材料的特性 26 表2- 5 FBAR電極材料的特性 27 表2- 6 FBAR元件的文獻比較 29 表2- 7 FBAR濾波器的文獻比較 39 表3- 1沉積薄膜的方法 43 表3- 2 APCVD、LPCVD和PECVD比較 43 表3- 3蒸鍍和濺鍍比較 45 表3- 4溼式蝕刻和乾式蝕刻比較 48 表3- 5不同蝕刻方式比較 49 表4- 1 RCA清洗參數 57 表4- 2微影空腔圖案的製程參數 58 表4- 3阻擋層AL的製程參數 58 表4- 4 PECVD沉積氮化矽的製程參數 59 表4- 5微影下電極圖案的製程參數 60 表4- 6電子束蒸鍍PT∕TI的製程參數 60 表4- 7清洗試片的製程參數 61 表4- 8微影壓電層圖案的製程參數 62 表4- 9微影壓電層圖案的製程參數 63 表4- 10濺鍍室溫壓電層的製程參數 63 表4- 11微影上電極圖案的製程參數 64 表4- 12反應式射頻磁控濺鍍AL的製程參數 64 表4- 13 ICP蝕刻空腔的製程參數 66 表5- 1各大學濺鍍機台參數 72 表5- 2 FBAR元件的量測與萃取值 80 表5- 3 FBAR元件的MBVD等效電路萃取直 80 表5- 4 FBAR元件的特性 81   圖目錄 圖2- 1 壓電效應[1] 8 圖2- 2 彈性材料內粒子位移示意圖 9 圖2- 3 ALN晶格結構 21 圖2- 4薄膜體聲波諧振器的三種結構 24 圖2- 5 FBAR元件結構 25 圖2- 6壓電薄膜內產生的TE模態 27 圖2- 7 FBAR等效電路(A)BVD模型 (B)MBVD模型 30 圖2- 8串聯諧振頻率的場型分布[2] 31 圖2- 9並聯諧振頻率的場型分布[2] 32 圖2- 10薄膜體聲波諧振濾波器的四種結構 35 圖2- 11 FBAR階梯式濾波器的電路示意圖 36 圖2- 12 FBAR階梯式濾波器的阻抗與頻率響應關係[1] 37 圖2- 13頻率響應分析圖[1] 38 圖3- 1微影製程的基本程序 40 圖3- 2蝕刻法 41 圖3- 3舉離法 41 圖3- 4薄膜沉積機制 42 圖3- 5 PECVD的工作機制[1] 44 圖3- 6電子束蒸鍍的工作機制[1] 45 圖3- 7磁控濺鍍的工作機制[1] 46 圖3- 8反應式射頻磁控濺鍍的工作機制[1] 47 圖3- 9 ICP蝕刻的工作機制[1] 49 圖4- 1 GSG間距 50 圖4- 2 CPW結構的特性阻抗 50 圖4- 3 FBAR元件光罩圖案設計 51 圖4- 4 L型FBAR濾波器等效電路及光罩圖案設計 53 圖4- 5 T型FBAR濾波器等效電路及光罩圖案設計 54 圖4- 6 Π型FBAR濾波器等效電路及光罩圖案設計 55 圖4- 7 FBAR元件的製作程序 56 圖4- 8上電極AL的沉積速率曲線 65 圖4- 9 CSR-3校準基板 (A)SHORT (B)OPEN (C) LOAD (D) THROUGH 67 圖5- 1壓電層ALN沉積結晶性不良 71 圖5- 2壓電層ALN成長狀況良好 72 圖5- 3溫差造成薄膜破碎 73 圖5- 4以3NM/SEC所蝕刻之壓電層 73 圖5- 5上電極AL破碎現象 74 圖5- 6上電極AL沉積太薄 74 圖5- 7上電極AL增厚 75 圖5- 8第二階段ICP 76 圖5- 9第一階段ICP 76 圖5- 10縮小背向蝕刻之空腔 77 圖5- 11元件實際量測圖 78 圖5- 12 FBAR元件的量測與萃取S11分析圖 79 圖5- 13 FBAR元件的量測與萃取S21分析圖 81 圖5- 14 FBAR元件輸入阻抗 82 圖5- 15 FBAR元件輸入阻抗相位分析圖 83 圖5- 16 FBAR元件的Q值圖 84

    參考文獻
    [1] 沈昱翔, "高頻通訊之氮化鋁薄膜體聲波諧振器及濾波器的研製與分析," 成功大學電機工程學系學位論文, pp. 1-108, 2016.
    [2] 林哲榆, "以非晶質氮化鋁為支撐層之薄膜型塊體聲波共振器的研究," 成功大學電機工程學系學位論文, pp. 1-71, 2006.
    [3] Qualcomm, "IEEE802.11ac: The Next Evolution of Wi-Fi Standards," 2012.
    [4] R. C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, and J. D. Larson, "Thin film bulk wave acoustic resonators (FBAR) for wireless applications," in Ultrasonics Symposium, 2001 IEEE, 2001, vol. 1, pp. 813-821: IEEE.
    [5] S. Chauhan and P. Chawla, "Development of FBAR Filter for Wireless Applications," in National Conference “IAEISDISE, 2014, vol. 12, no. 13.
    [6] C.-M. Yang, K. Uehara, S.-K. Kim, S. Kameda, H. Nakase, and K. Tsubouchi, "Highly c-axis-oriented AlN film using MOCVD for 5GHz-band FBAR filter," in Ultrasonics, 2003 IEEE Symposium on, 2003, vol. 1, pp. 170-173: IEEE.
    [7] 劉吉卿, "以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之應用," 撰者, 2006.
    [8] C. Fang, S. Lin, Y. Chin, P. Chen, H. Lin, and P. Chang, "5.4 GHz high-Q bandpass filter for wireless sensor network system," in Sensors, 2009 IEEE, 2009, pp. 1487-1491: IEEE.
    [9] K. Lakin and J. Wang, "Acoustic bulk wave composite resonators," Applied Physics Letters, vol. 38, no. 3, pp. 125-127, 1981.
    [10] G. Kline and K. Lakin, "1.0‐GHz thin‐film bulk acoustic wave resonators on GaAs," Applied Physics Letters, vol. 43, no. 8, pp. 750-751, 1983.
    [11] C. Vale, J. Rosenbaum, S. Horwitz, S. Krishnaswamy, and R. Moore, "FBAR filters at GHz frequencies," in Frequency Control, 1990., Proceedings of the 44th Annual Symposium on, 1990, pp. 332-336: IEEE.
    [12] D. Cushman, K. Lau, E. Garber, K. Mai, A. Oki, and K. Kobayashi, "SBAR filter monolithically integrated with HBT amplifier," in Ultrasonics Symposium, 1990. Proceedings., IEEE 1990, 1990, pp. 519-524: IEEE.
    [13] R. C. Ruby and P. P. Merchant, "Tunable thin film acoustic resonators and method for making the same," ed: Google Patents, 1996.
    [14] R. C. Ruby, "Post-fabrication tuning of acoustic resonators," ed: Google Patents, 1998.
    [15] R. C. Ruby and P. P. Merchant, "Method of making tunable thin film acoustic resonators," ed: Google Patents, 1999.
    [16] P. D. Bradley, J. D. Larson III, and R. C. Ruby, "Duplexer incorporating thin-film bulk acoustic resonators (FBARs)," ed: Google Patents, 2001.
    [17] T. Nishihara, T. Yokoyama, T. Miyashita, and Y. Satoh, "High performance and miniature thin film bulk acoustic wave filters for 5 GHz," in Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, 2002, vol. 1, pp. 969-972: IEEE.
    [18] B. P. Otis and J. M. Rabaey, "A 300µmW 1.9 GHz CMOS oscillator utilizing micromachined resonators," in Solid-State Circuits Conference, 2002. ESSCIRC 2002. Proceedings of the 28th European, 2002, pp. 151-154: IEEE.
    [19] H. Yu, W. Pang, H. Zhang, and E. S. Kim, "Film bulk acoustic resonator at 4.4 GHz with ultra low temperature coefficient of resonant frequency," in Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on, 2005, pp. 28-31: IEEE.
    [20] K. Nam, Y. Park, S. Hong, J. Pak, G. Park, and I. Song, "MEMS based bulk acoustic wave resonators for mobile applications," Integrated Ferroelectrics, vol. 77, no. 1, pp. 101-108, 2005.
    [21] J. Y. Park, K. H. Lee, and S. J. Cheon, "Silicon bulk micromachined FBAR filter and duplexer for advanced handset applications," Microwave and Optical Technology Letters, vol. 49, no. 2, pp. 339-342, 2007.
    [22] W. Pang, H. Zhang, S. Whangbo, and E. S. Kim, "High Q film bulk acoustic resonator from 2.4 to 5.1 GHz," in Micro Electro Mechanical Systems, 2004. 17th IEEE International Conference on.(MEMS), 2004, pp. 805-808: IEEE.
    [23] H. Zhang and E. S. Kim, "Air-backed Al/ZnO/Al film bulk acoustic resonator without any support layer," in Frequency Control Symposium and PDA Exhibition, 2002. IEEE International, 2002, pp. 20-26: IEEE.
    [24] M. Yim, D.-H. Kim, D. Chai, and G. Yoon, "Significant resonance characteristic improvements by combined use of thermal annealing and Co electrode in ZnO-based FBARs," Electronics Letters, vol. 39, no. 23, pp. 1638-1640, 2003.
    [25] 魏炯權, "薄膜成形技術," 電子陶瓷材料, pp. 6-1~6-36, 2001.
    [26] 吳朗, 電子陶瓷: 壓電陶瓷. 全欣, 1994.
    [27] J. Rosenbaum, Bulk acoustic wave theory and devices. Artech House on Demand, 1988.
    [28] G. Fuentes Iriarte, "AlN thin film electroacoustic devices," Acta Universitatis Upsaliensis, 2003.
    [29] F. Gerfers, P. M. Kohlstadt, E. Ginsburg, M. Y. He, D. Samara-Rubio, and Y. Manoli, "Sputtered aln thin films for piezoelectric mems devices-fbar resonators and accelerometers," in Solid state circuits technologies: InTech, 2010.
    [30] L. Qin, Q. Chen, H. Cheng, and Q.-M. Wang, "Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 57, no. 8, 2010.
    [31] E. Ruiz, S. Alvarez, and P. Alemany, "Electronic structure and properties of AlN," physical Review B, vol. 49, no. 11, p. 7115, 1994.
    [32] P. Kuo, G. Auner, and Z. Wu, "Microstructure and thermal conductivity of epitaxial AlN thin films," Thin Solid Films, vol. 253, no. 1-2, pp. 223-227, 1994.
    [33] J. Ruffner, P. Clem, B. Tuttle, D. Dimos, and D. Gonzales, "Effect of substrate composition on the piezoelectric response of reactively sputtered AlN thin films," Thin Solid Films, vol. 354, no. 1, pp. 256-261, 1999.
    [34] C. Aardahl, J. Rogers, H. Yun, Y. Ono, D. Tweet, and S.-T. Hsu, "Electrical properties of AlN thin films deposited at low temperature on Si (100)," Thin Solid Films, vol. 346, no. 1-2, pp. 174-180, 1999.
    [35] 周继承 and 石之杰, "AlN 电子薄膜材料的研究进展," 材料导报, vol. 21, no. 5, pp. 14-16, 2007.
    [36] C. Han et al., "High potential columnar nanocrystalline AlN films deposited by RF reactive magnetron sputtering," Nano-Micro Letters, vol. 4, no. 1, pp. 40-44, 2012.
    [37] K.-W. Tay, C.-L. Huang, and L. Wu, "Highly c-axis oriented thin AlN films deposited on gold seed layer for FBAR devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 23, no. 4, pp. 1474-1479, 2005.
    [38] J.-P. Jung, J.-B. Lee, M.-H. Lee, and J.-S. Park, "Experimental and theoretical investigation on the relationship between AlN properties and AlN-based FBAR characteristics," in Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003 IEEE International, 2003, pp. 779-784: IEEE.
    [39] W. G. Cady, "Piezoelectricity: an introduction to the theory and applications of electromechanical phenomena in crystals," 1946.
    [40] H. Campanella, Acoustic wave and electromechanical resonators: concept to key applications. Artech House, 2010.
    [41] S. Mahon and R. Aigner, "Bulk acoustic wave devices–why, how, and where they are going," in CS MANTECH Conference, 2007, pp. 15-18.
    [42] C. P. Wen, "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1087-1090, 1969.
    [43] X. Hiao, Introduction to semiconductor manufacturing technology. Prentice Hall, 2000.
    [44] 何菊生, 张萌, and 肖祁陵, "半导体外延层晶格失配度的计算," 南昌大學學報 (理科版), vol. 30, no. 1, pp. 63-67, 2006.
    [45] 蔡政宏, "微機電製程應用於薄膜體聲波元件之研究," 撰者, 2006.
    [46] 劉永宏, "氮化鋁薄膜體聲波共振器分析與研製," 成功大學電機工程學系學位論文, pp. 1-62, 2005.
    [47] K. M. Lakin, "A review of thin-film resonator technology," IEEE Microwave Magazine, vol. 4, no. 4, pp. 61-67, 2003.
    [48] M. Moreira, J. Bjurström, I. Katardjev, and V. Yantchev, "Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications," Vacuum, vol. 86, no. 1, pp. 23-26, 2011.
    [49] 蔡洵, 高杨, 黄振华, and 刘海涛, "薄膜体声波谐振器的测试与表征," 微纳电子技术, vol. 52, no. 10, pp. 660-665, 2015.
    [50] Q.-X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, and R. Whatmore, "Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 4, pp. 769-778, 2001.
    [51] J. D. N. Cheeke, Fundamentals and applications of ultrasonic waves. CRC press, 2012.
    [52] 陳信樺, "薄膜體聲波濾波器之製作及其特性優化," 撰者, 2009.
    [53] Z. Zhang, Y. Lu, W. Pang, D. Zhang, and H. Zhang, "A high performance C-band FBAR filter," in Microwave Conference Proceedings (APMC), 2013 Asia-Pacific, 2013, pp. 923-926: IEEE.
    [54] T. E. Kolding, "General accuracy considerations of microwave on-wafer silicon device measurements," in Microwave Symposium Digest. 2000 IEEE MTT-S International, 2000, vol. 3, pp. 1839-1842: IEEE.
    [55] K. S. E. Ramadan and S. Evoy, "Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites," PloS one, vol. 10, no. 7, p. e0133479, 2015.
    [56] 呂奕璋, "以氮化鋁為壓電薄膜之高頻薄膜體聲波濾波器研製," 臺灣大學應用力學研究所學位論文, pp. 1-118, 2007.
    [57] 宋人豪, "C 軸取向氮化鋁薄膜應用於鑽石表面聲波濾波器之研究," 成功大學材料科學及工程學系學位論文, pp. 1-81, 2004.
    [58] 楊詠暉, "以反應式磁控濺鍍法低溫濺鍍氮化鋁薄膜之研究," 2004.
    [59] 陳健興, "氮化鋁薄膜在鈮酸鋰基板上之表面聲波特性," 撰者, 2001.
    [60] 黃靜茹, 黃興祿, 陳亮斌, and 謝光宇, "在底層電極上以常溫成長氮化鋁薄膜之研究," 材料科學與工程, vol. 34, no. 1, pp. 55-60, 2002.
    [61] A. Ababneh, H. Kreher, and U. Schmid, "Etching behaviour of sputter-deposited aluminium nitride thin films in H3PO4 and KOH solutions," Microsystem Technologies, vol. 14, no. 4-5, pp. 567-573, 2008.
    [62] I. Zubel and M. Kramkowska, "The effect of alcohol additives on etching characteristics in KOH solutions," Sensors and Actuators A: Physical, vol. 101, no. 3, pp. 255-261, 2002.
    [63] 羅正忠 and 張鼎張, "半導體製程技術導論," 台灣培生教育出版股份有限公司, 民國 98 年, 2002.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE