簡易檢索 / 詳目顯示

研究生: 陳泓宇
Chen, Hung-Yu
論文名稱: 以自調式數位電荷平衡控制改善降壓轉換器之動態電壓準位暫態響應
Self-Tuning Charge Balance Control for Improving the Load Transient Response on Dynamic Voltage Scaling (DVS) Buck Converter
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 107
中文關鍵詞: 自動調控電荷平衡動態電壓調節
外文關鍵詞: Auto tuning, charge balance control (CBC), dynamic voltage scaling (DVS)
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以可程式化的數位控制實現電荷平衡模式之電壓回授控制型切換式降壓直流直流轉換器。穩態時,由PID補償器來穩定輸出電壓;在暫態時,會由電荷平衡模式接手控制,達到加速暫態響應的效果。電荷平衡模式可以同時操作在負載變動與動態電壓調節(Dynamic Voltage Scaling, DVS)。首先,本文介紹一種藉由需要快速高解析度的類比數位轉換器(Analog-to-digital converter, ADC)來完成計算型電荷平衡控制;另外,亦採用較慢速的類比數位轉換器配合自動調控機制達成暫態加速效果。
    本文透過MATLAB Simulink/ Modelsim共同模擬及FPGA搭配PCB佈局來實證計算型電荷平衡模式和自動調控型電荷平衡模式,轉換器輸入及輸出電壓分別設定為3.3V及0.9-1.8V,在負載變動及動態電壓調節下,藉由提出的方法可以看出暫態時間皆可在5μs以內完成。

    Abstract—In this thesis, a programmable voltage-based charge balance control (CBC) implemented on a buck converter is presented. The proposed CBC simultaneously optimizes both load transient and dynamic voltage scaling (DVS) to minimize output voltage spikes and settling time. During steady state, a voltage mode PID compensator is applied to stabilize output voltage. During load or DVS transient, the proposed CBC takes over the control. Firstly, this paper introduces a computational method that needs a high resolution analog-to-digital (ADC) converter to achieve better CBC performance. Secondly, an auto-tuning mechanism is introduced to achieve the same performance but using lower spec ADC. Both CBCs were tested on the MATLAB Simulink/ Modelsim co-simulation platform to verify the effectiveness of transient response. The proposed algorithms (CBC and Auto tuning) are implemented on a FPGA board for controlling a Buck converter. Simulation and experimental results show that the output voltage (Vout) spontaneously follows the DVS command at various Vout levels (from 0.9V to 1.8V) within 5s.
    Keywords: Auto tuning, charge balance control (CBC), dynamic voltage scaling (DVS)

    摘要 I Abstract II 圖目錄 XVII Chapter 1 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 5 Chapter 2 電荷平衡模式分析與控制設計 6 2.1 直流降壓轉換器的工作原理 6 2.1.1 操作情況 6 2.1.2 穩態表現 6 2.1.3 暫態表現 8 2.1.4 效率(Efficiency) 9 2.2 傳統加速暫態響應方式 10 2.2.1 基本介紹 10 2.2.2 有外加電路 12 2.2.3 無外加電路 15 2.3 電荷平衡模式分析 19 2.3.1 基本觀念 19 2.3.2 應用於負載變動 21 2.3.3 應用於動態電壓調節 26 2.3.4 應用於同時負載變動與動態電壓調節 30 2.4 電荷平衡的非理想效應 35 2.4.1 類比數位轉換器差異 35 2.4.2 電荷平衡的非理想效應 39 Chapter 3 自動調控機制 42 3.1 前言 42 3.2 相關自動調控方法 43 3.2.1 無感式電流估測器[22] 43 3.2.2 自動調控電感電流斜率補償[23] 43 3.2.3 AVP自動調控演算法[24] 44 3.3 本文所提出之自動調控方法 45 3.3.1 自動調控之改善 47 Chapter 4 電路設計與實現 49 4.1 電路架構 49 4.2 類比電路設計與實現 51 4.2.1 峰值偵測電路 51 4.2.2 參考電壓產生器 52 4.2.3 暫態偵測電路 53 4.2.4 類比/數位轉換器(A/D Converter) 54 4.2.5 快速負載變動電路 55 4.2.6 快速參考電壓變動電路 55 4.3 數位電路設計與實線 56 4.3.1 數位控制架構 56 4.3.2 數位脈波寬度調變(DPWM) 59 4.3.3 數位補償器 62 4.3.4 時脈產生器 66 4.3.5 電荷平衡控制 67 4.3.6 自動調控機制 68 4.3.7 峰值偵測電路 69 4.3.8 初始責任周期(Initial Duty)計算器 70 Chapter 5 模擬與量測結果 73 5.1 模擬結果 73 5.1.1 理想公式驗證 75 5.1.2 暫態響應 78 5.1.3 電荷平衡模式 80 5.1.4 自動調控模式 81 5.1.5 比較分析 86 5.2 實體電路量測結果 87 5.2.1 暫態響應 87 5.2.2 電荷平衡模式 89 5.2.3 自動調控模式 91 5.2.4 比較分析 97 Chapter 6 結論 101 6.1 結論 101 6.2 未來展望 102 參考文獻 103

    [1]
    M. Hiraki, T. Ito, A. Fujiwara, T. Ohashi, T. Hamano, and T. Noda, “A 63-μW Standby Power Microcontroller With On-Chip Hybrid Regulator Scheme,” IEEE J. of Solid-State Circuits, vol. 37, no. 5, pp. 605-611, May. 2002.
    [2]
    J. M. Chang. and M. Pedram, "Energy Minimization Using Multiple Supply Voltages," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 5, pp. 436-443, 1997.
    [3]
    K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M. Kanzawa, M. Ichida, et al., "Automated Low-Power Technique Exploiting Multiple Supply Voltages Applied to a Media Processor," IEEE Journal of Solid-State Circuits, vol. 33, pp. 463-472, 1998.
    [4]
    Lee, Y. H., S.Y. Peng, C.C. Chiu, A. C. H. Wu, K. H. Chen, Y. H. Lin, S. W. Wang, T. Y. Tsai, C. C. Huang, and C. C. Lee, “A Low Quiescent Current Asynchronous Digital-LDO With PLL-Modulated Fast-DVS Power Management in 40 nm SoC for MIPS Performance Improvement,’’ IEEE J. Solid-State Circuits, vol. 48, pp. 1018-1030, 2013.
    [5]
    Y. H. Lee, C. C. Chiu, S. Y. Peng, K. H. Chen, Y. H. Lin, C. C. Lee, C. C. Huang, and T. Y. Tsai, “A Near-Optimum Dynamic Voltage Scaling (DVS) in 65-nm Energy-Efficient Power Management with Frequency-Based Control (FBC) for SoC System,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2563–2575, Nov. 2012.
    [6]
    Y. T. Lee, C. L. Wei, and C. H. Chen, "An Integrated Step-Down DC-DC Converter with Low Output Voltage Ripple," in 2010 5th IEEE Conference on Industrial Electronics and Applications, 2010, pp. 1373-1378.
    [7]
    S. Kapat, “Improved time optimal control of a buck converter based on capacitor current,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1444– 1454, Mar. 2012.
    [8]
    Y. H. Lee, C. C. Chiu, S. Y. Peng, K. H. Chen, Y. H. Lin, C. C. Lee, C. C. Huang, and T. Y. Tsai, “A Near-Optimum Dynamic Voltage Scaling (DVS) in 65-nm Energy-Efficient Power Management with Frequency-Based Control (FBC) for SoC System,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2563–2575, Nov. 2012.
    [9]
    C. F. Lee, P. K. T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
    [10]
    W. R. Liou, M. L. Yeh, and Y. T. Kuo, “A High Efficiency Dual-Mode Buck Converter IC for Portable Applications,” IEEE Trans. Power Electron, vol. 23, no. 2, pp. 667–677, Mar. 2008.
    [11]
    R. Singh, A. Khambadkone, "A buck-derived topology with improved step-down transient performance", IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2855-2866, Nov. 2008.
    [12]
    S. Ahsanuzzaman, A. Parayandeh, A. Prodic, D. Maksimovic, "Load-interactive steered-inductor dc–dc converter with minimized output filter capacitance", Proc. 25th Annu. IEEE Appl. Power Electron. Conf. Expo., pp. 980-985, Feb. 2010.
    [13]
    F. Su, W.-H. Ki, and C.-Y. Tsui, “Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 815–822, Apr. 2008.
    [14]
    Y. Y. Mai and P. Mok, “A constant frequency output-ripple-voltage-based buck converter without using large ESR capacitor,” IEEE Trans. Circuits Syst. II: Expr. Briefs, vol. 55, no. 8, pp. 748–752, Aug. 2008.
    [15]
    G. Feng, E. Meyer, and YF Liu, “A New Digital Control Algorithm to Achieve Optimal Dynamic Performance in DC-to-DC Converters,”IEEE Trans. Power Electron., VOL. 22, NO. 4, pp. 1489-1498, Jul. 2007
    [16]
    E. Meyer, Z. Zhang, and Y.-F. Liu, “An optimal control method for buck converters using a practical capacitor charge balance technique,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1802–1812, Jul. 2008.
    [17]
    E. Meyer , Z. Zhang and Y. F. Liu "Digital charge balance controller to improve the loading/unloading transient response of buck converters", IEEE Trans. Power Electron., vol. 27, no. 3, pp.1314 -1326 2012
    [18]
    L. Jia and Y.-F. Liu, “Voltage-based charge balance controller suitable for both digital and analog implementations,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 930–944, 2013.
    [19]
    A. V. Peterchev, and S. R. Sanders, “Quantization Resolution and Limit Cycling in Digitally Converters,” IEEE Trans. on Power Electronics, vol. 18, no.1, pp. 301-308, Jan. 2003.
    [20]
    L. Corradini, P. Mattavelli, W. Stefanutti, S. Saggini, “Simplified Model Reference-based Autotuning for Digitally Controlled SMPS,”IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1956-1963, Jul. 2008
    [21]
    W. Stefanutti, P. Mattavelli, S. Saggini, and M. Ghioni, “Auto tuning of digitally controlled DC-DC converters based on relay feedback,” IEEE Trans. Power Elec-tron., vol. 22, pp. 199–207, Jan. 2007.
    [22]
    Lukic, Z. ; Zhenyu Zhao ; Ahsanuzzaman, S.S. ; Prodić, A. “SelfTuning Digital Current Estimator for Low-Power Switching Converters”, Applied Power Electronics Conference and Exposition, 2008. APEC 2008. Twenty-Third Annual IEEE, pp. 529–534.
    [23]
    Pei-Hsin Liu, Yingyi Yan , Fred C. Lee,, and Paolo Mattavelli, “Universal Compensation Ramp Auto-Tuning Technique for Current Mode Controls of Switching Converters,” IEEE Trans. Power Electron., vol. 33, NO. 2, FEBRUARY 2018.
    [24]
    劉智偉, “以獨立自主式控制實現適應性電壓準位切換式直流-直流轉換器” 國立成功大學電機工程學系電機研究所碩士論文, 2012
    [25]
    B. Sahu, G.A. Rincon-Mora, “An Accurate, Low-Voltage, CMOS Switching Power Supply With Adaptive On-Time Pulse-Frequency Modulation (PFM) Control,” IEEE Trans. Circuits and Systems I, vol.54, No. 2, pp.312 – 321, Feb. 2007
    [26]
    Hoang, N. K., Woo, Y. J., & Lee, S. G. (2015). A Zero Current Detector with Low Reverse Current by Forcing Freewheel Switch Operation in Buck Converter
    [27]
    L. Jia, D. Wang, Y. F. Liu, and P. Sen, “A novel fully analog implementation of capacitor charge balance controller with a practical extreme voltage detector,” in Proc. IEEE APEC, Fort Worth, TX, USA, 2011, pp. 245–252.
    [28]
    L. Cheng, Y. Liu, and W.-H. Ki, “A 10/30 MHz fast reference-tracking Buck converter with DDA-based type-III compensator,” IEEE J. SolidState Circuits, vol. 49, no. 12, pp. 2788–2799, Dec. 2014.
    [29]
    S.-H. Chien et al., “A Monolithic Capacitor-Current-Controlled Hysteretic Buck Converter with Transient-Optimized Feedback Circuit,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2524-2532, Nov. 2015.
    [30]
    D. K. W. Li, Z. Gong, M. Rose, H. J. Bergveld, and O. Trescases,“Improved dynamics in dc-dc converters for IoT applications with repetitive load profiles using self-calibrated preemptive current control,”Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 3352–3356, Mar. 2017.
    [31]
    L. Jia and Y.-F. Liu, “Voltage-based charge balance controller suitable for both digital and analog implementations,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 930–944, 2013.

    下載圖示 校內:2023-02-01公開
    校外:2023-02-01公開
    QR CODE