簡易檢索 / 詳目顯示

研究生: 何程翔
Ho, Cheng-Hsianh
論文名稱: 車型機器人之全方位影像處理停車控制器設計與實現
Design and Implementation of Omni-Directional Vision-Based Parking Controller for Car-Like Mobile Robot
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 81
中文關鍵詞: 停車控制器全方位影像車型機器人
外文關鍵詞: Omni-directional, mobile robot, parking controller
相關次數: 點閱:71下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要係設計與實現一全方位影像處理停車控制器之車型機器人,其中停車控制技術係依據模糊邏輯控制法則來研發設計。為了讓車型機器人能平滑的沿著所規劃的路徑移動,我們利用模糊控制器來決定車型機器人所轉動的角度來提升路徑追蹤的能力。在本研究主題中,路徑追蹤的問題可以視為將全方位影像中停車格對於車型機器人的姿態重新轉換成一個新的虛擬停車格,然後沿著虛擬停車格的位置來完成停車路徑的設計規劃與實現停車控制。首先,我們利用影像處理的方法來濾除全方位影像上的雜訊以及找尋出影像中停車格的位置。從全方位的影像資訊中,我們可以估測出車型機器人相對於停車格的相對位置並計算出一條可行的停車路徑來完成停車的目的。接著,設計一模糊邏輯控制器來控制車型機器人和提升路徑追蹤的效能以完成路邊停車控制和車庫停車控制的任務。最後,由實驗之結果均展現所提之全方位影像處理技術與智慧型自動停車策略皆具可行性與有效性。

     This thesis presents an omni-directional vision-based control scheme for car-like mobile robot (CLMR), which possesses autonomous parking capability. All the parking control and path tracking control system are developed on the basis of fuzzy logic schemes. In order to smoothly change the direction of the CLMR, a practicable reference trajectory is provided for the fuzzy controller to maneuver the steering angle of the CLMR. In the study, a path tracking problem is formulated as following a virtual parking lot, which is transformed with respect to the posture of the parking lot in panoramic images. At first, we apply the image processing technique to omni-directional images to filter out the noise and find the characteristic points of the parking lot. From the image information, one can estimate the position of the CLMR in the parking space and figure out a feasible reference trajectory. Then, we develop a fuzzy logic controller to manipulate the steering angle and increase the path tracking performance such that the CLMR can execute the parking missions, parallel parking and garage parking. Finally, the real-time experimental results demonstrate the practicability and effectiveness of the proposed image processing method and autonomous parking control scheme.

    Abstract I Acknowledgment II Contents IV List of Figures VII List of Tables XI Chapter 1. Introduction 1 1.1 Preliminary 1 1.2 Thesis Organization 3 Chapter 2. Hardware Architecture of CLMR 5 2.1 Introduction 5 2.2 The Car Body and Personal Computer 7 2.3 The DC Servo Motor, the DC motor and Its Driver System 7 2.3.1 The Motor Driver Circuit 7 2.3.2 Signal Processing Circuit 8 2.4 Omni-Directional Vision System 10 2.4.1 The Catadioptric Mirror 11 2.4.2 The CCD Sensor 13 2.4.3 The Image Grabbing Card 14 2.5 Summary 16 Chapter 3. The Omni-Directional Vision System 17 3.1 Introduction 17 3.2 Image Processing Method 18 3.2.1 The Noise Filter 19 3.2.2 Edge Detection 21 3.2.3 The Skeletonizing Algorithm 24 3.3 Parking Lot Extraction 25 3.3.1 Parking Lot Extraction Method 25 3.3.2 Get the Coordinates of Parking Lot 28 3.4 Summary 31 Chapter 4.Omni-Directional Vision-Based Parallel-Parking Control 32 4.1 Introduction 32 4.2 Parallel-Parking Trajectory Design 35 4.2.1 Constraints of a Reference Trajectory for Parallel Parking 35 4.2.2 Design a Reference Trajectory for Parallel Parking 38 4.3 Coordinate Transformation 41 4.4 Path Error Definition 42 4.5 A Fuzzy Path Tracking Controller 47 4.5.1 Fuzzification 48 4.5.2 Inference 49 4.5.3 Composition 53 4.5.4 Defuzzification 53 4.6 Summary 54 Chapter 5. Omni-Directional Vision-Based Garage-Parking Control 55 5.1 Introduction 55 5.2 Garage-Parking Trajectory Design 57 5.2.1 Design a Reference Trajectory for Garage Parking 57 5.3 Coordinate Transformation 60 5.4 Path Error Definition 62 5.5 A Fuzzy Path Tracking Controller 68 5.6 Summary 69 Chapter 6. Experimental Results 70 6.1 Introduction 70 6.2 Experimental Results 71 6.3 Summary 75 Chapter 7. Conclusions and Future Works 76 7.1 Conclusions 76 7.2 Future Works 77 References 78 Biography 81

    [1] M. Sugeno and K. Murakami, “An experimental study on fuzzy parking control using a model car,” in Industrial Applications of Fuzzy Control, M. Sugeno, Ed. North-Holland, The Netherlands, pp. 105–124, 1985.
    [2] M. Sugeno, T. Murofushi, T. Mori, T. Tatematsu, and J. Tanaka, “Fuzzy algorithmic control of a model car by oral instructions,” Fuzzy Sets Syst., vol. 32, pp. 207–219, 1989.
    [3] A. Ohata and M. Mio, “Parking control based on nonlinear trajectory control for low speed vehicles,” in Proc. IEEE Int. Conf. Industrial Electronics, pp. 107–112, 1991.
    [4] S. Yasunobu and Y. Murai, “Parking control based on predictive fuzzy control,” in Proc. IEEE Int. Conf. Fuzzy Systems, vol. 2, pp. 1338–1341, 1994.
    [5] W. A. Daxwanger and G. K. Schmidt, “Skill-based visual parking control using neural and fuzzy networks,” in Proc. IEEE Int. Conf. System, Man, Cybernetics, vol. 2, pp. 1659–1664, 1995.
    [6] A. Tayebi and A. Rachid, “A time-varying-based robust control for the parking problem of a wheeled mobile robot,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 3099–3104, 1996.
    [7] H. An, T. Yoshino, D. Kashimoto, M. Okubo, Y. Sakai, and T. Hamamoto, “Improvement of convergence to goal for wheeled mobile robot using parking motion,” in Proc. IEEE Int. Conf. Intelligent Robots Systems, pp. 1693–1698, 1999.
    [8] M. Ohkita, H. Mitita, M. Miura, and H. Kuono, “Traveling experiment of an autonomous mobile robot for a flush parking,” in Proc. 2nd IEEE Conf. Fuzzy System, vol. 2, Francisco, CA, pp. 327–332, 1993.
    [9] D. Lyon, “Parallel parking with curvature and nonholonomic constraints,” in Proc. Symp. Intelligent Vehicles, Detroit, MI, pp. 341–346, 1992.
    [10] I. E. Paromtchik and C. Laugire, “Motion generation and control for parking an autonomous vehicle,” in Proc. IEEE Conf. Robotics Automation, vol. 4, Minneapolis, MN, pp. 3117–3122, 1996.
    [11] K.Y. Lian, C. S. Chin, and T. S. Chiang, “Parallel parking a car-like robot using fuzzy gain scheduling,” in Proc. 1999 IEEE Int. Conf. Control Applications, vol. 2, pp. 1686–1691, 1999.
    [12] K. Jiang, “A sensor guided parallel parking system for nonholonomic vehicles,” in Proc. IEEE Conf. Intelligent Transportation Systems, pp. 270–275, 2000.
    [13] J. Xiu, G. Chen, and M. Xie, “Vision-guided automatic parking for smart car,” in Proc. IEEE Intelligent Vehicles Symp., pp. 725–730, 2000.
    [14] D. Gorinevsky, A. Kapitanovsky, and A. Goldenberg, “Neural network architecture for trajectory generation and control of automated car parking,” IEEE Trans. Contr. Syst. Technol. , Jan., vol. 4, pp. 50–56, 1996.
    [15] S. Lee, M. Kim, Y. Youm, and W. Chung, “Control of a car-like mobile robot for parking problem,” in Proc. IEEE Int. Conf. Robotics Automation, pp. 1–6, 1999.
    [16] T.-H. S. Li and S.-J. Chang, “Autonomous Fuzzy Parking Control of a Car-Like Mobile Robot,” IEEE Transactions on systems, man, and cybernetics, vol. 33, pp. 451–465, 2003.
    [17] T.-H. S. Li, S.-J. Chang, and Y.X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot”, IEEE Trans on Industrial Electronics, vol. 50, NO.5, pp. 867-880, 2003.
    [18] F. Gómez-Bravo, F. Cuesta, and A. Ollero, “Parallel and diagonal parking in nonholonomic autonomous vehicles”, Engineering Applications of Artificial Intelligence 14, pp. 419-434, 2001.
    [19] K. C. KOH and H. S. CHO, “A Smooth Path Tracking Algorithm for Wheeled Mobile Robots with Dynamic Constraints”, Journal of Intelligence and Robotic Systems 24, pp. 367-385, 1999.
    [20] Y. Yagi, Y. Nishizawa, and M. Yachida, “Map-based navigation for a mobile robot with omnidirectional image sensor COPIS,” IEEE Trans. Robot. Automat., vol. 11, Oct.. pp. 634–648, 1995.
    [21] C. Pegard and E.M. Mouaddib “A mobile robot using a panoramic view,” in Proceedings of the IEEE International Conference on Robotics and Automation, 0-7803-2988-4/96, pp. 89-94, 1996.
    [22] N. Winters, J. Gaspar, Gerard Lacey and J. Santos, “Omni-directional Vision for Robot Navigation,” Omnidirectional Vision, 2000. Proceedings. IEEE Workshop on, 12 June, pp.21-28 , 2000.
    [23] J. Gaspar, N. Winters and J. Santos, “Vision-Based Navigation and Enviromental Representations with an Omnidirectional Camera,” IEEE Transactions on Robotics and Automation, Vol. 16, No. 6, pp. 890-898, 2000.
    [24] I.D. Scalbe, “Natural representations for straight lines and the Hough transform on discrete arrays,” IEEE Transactions on pattern analysis and machine intelligence, vol. 11, no. 9, sept 89, pp. 941-950.
    [25] Daniel P. Hunttenlocher, Ryan H. Lilien, and Clark F.Olson, “View-Based Recognition Using an Eigenspace Approximation to Hausdorff Measure,” IEEE Transactions on pattern analysis and machine intelligence, vol. 21, no. 9, pp. 951-955, sept 1999.
    [26] Xilin Yi, and Octavial I., “Line-Based Recognition Using A Multidimensional Hausdorff Distance,” IEEE Transactions on pattern analysis and machine intelligence, vol. 21, pp. 951-955, no. 9, sept 1999.
    [27] K. Han and M. Veloso, “Reactive Visual Control of Multiple Non-Holonomic Robotic Agents,” Proc. of IEEE International Conf. on Robotics and Automation, pp. 3510-3515, 1998.
    [28] PIHSIANG MACHINERY MFG. CO., LTD., http://www.pihsiang.com.tw/
    [29] Micro-Star-Int’l Co. Ltd., http://www.msi.com.tw/
    [30] Rafael C. Gonzales, and Richard E. Woods, Digital Image Processing, Second Edition, 2002.
    [31] User’s Manual: Matrox Meteor-Ⅱ Installation and Hardware Reference, Matrox Electronic Systems Ltd., 2000.
    [32] User Guide, Matrox Imaging Library, Matrox Electronic Systems Ltd., Canada, 1998.

    下載圖示 校內:2006-07-04公開
    校外:2006-07-04公開
    QR CODE