簡易檢索 / 詳目顯示

研究生: 陳亞靖
Chen, Ya-Jing
論文名稱: 具切換電感及電容雙向直流-直流轉換器之研製
Design and Implementation of a Bidirectional DC-DC Converter with Switched-Inductor and Capacitor
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 79
中文關鍵詞: 混合式類比數位控制雙向轉換器高升降壓轉換器
外文關鍵詞: Analog-digital hybrid control, bidirectional converter, high step-up/down converter
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本架構擁有高轉換比、電壓應力低的優點。本文以類比數位混合式控制方式,透過混合式的控制法,使用類比和數位控制的優點,在最大峰值電流控制下,可以降低控制的相位延遲,來減少相位裕度的損失,使電路控制迴路更加穩定。
    由於雙向架構使用一般的Si-MOSFET會讓整體的效率降低,且逆向恢復電壓會比SiC-MOSFET還要大許多。造成在元件規格選擇上會比預期的1.5 ~ 2倍電壓還要大,若使用SiC-MOSFET逆向恢復損失會比Si-MOSFET還要小、整體效率較高。
    另外文中將介紹穩態分析和參數設計,藉由理論推導及實作一高壓側電壓為400V、低壓側電壓為48V、輸出功率為500W、操作頻率為200kHz的雙向升降壓轉換器來驗證架構及控制之可行性。此轉換器操作於升壓模式下之最高轉換效率為94.35%,操作於降壓模式下之最高轉換效率為95.15%。

    This architecture has the advantage of a high conversion ratio and low voltage stress. In this thesis, the analog-digital hybrid control method is adopted. The advantages of analog and digital control are used through the hybrid control method. Under the maximum peak current control, the phase delay of the control can be reduced to reduce the loss of phase margin and make the circuit control loop more stable.
    Since the bidirectional architecture uses a general Si-MOSFET, the overall efficiency will be reduced, and the reverse recovery voltage will be much larger than that of the SiC-MOSFET. As a result, the component specification selection will be larger than the expected 1.5 to 2 times the voltage. If SiC-MOSFET is used, the reverse recovery loss will be smaller than that of Si-MOSFET, and the overall efficiency will be higher.
    In addition, steady state analysis and parameter design will be introduced in this thesis. The feasibility of the structure and control is verified by theoretical derivation and implementation of a bidirectional step-up/down converter with a high side voltage input voltage of 400V, a low side voltage of 48V, and the output power of 500W, and an operating frequency of 200kHz. The highest conversion efficiency of this converter operating in step-up mode is 94.35%, and the highest conversion efficiency in step-down mode is 95.15%.

    摘要 I ABSTRACT II ACKNOWLEDGEMENT III CONTENTS IV LIST OF TABLES VII LIST OF FIGURES VIII CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Thesis Outline 4 CHAPTER 2 THE TOPOLOGY OF BIDIRECTIONAL DC-DC CONVERTER 5 2.1 Classification of Power Electronics Converter 5 2.2 Switched-Inductor and Capacitor Structure 7 2.2.1 Passive Switched-Inductor Structure 7 2.2.2 Active Switched-Inductor Structure 8 2.2.3 Passive Switched-Capacitor Structure 9 2.2.4 Active Switched-Capacitor Structure 10 2.2.5 Summary of Switched-Inductor and Capacitor Structure 10 2.3 Compare MOSFET Material 11 2.3.1 Material Characteristics 12 2.3.2 Recovery Characteristics of Si and SiC-MOSFET 14 2.3.3 Power Consumption of Component 15 2.3.4 Summary 21 2.4 Output Voltage Sampling Circuit 21 2.4.1 Features of AD7276 21 2.4.2 The Operating Principle of AD7276 22 2.5 Analog/Digital Controller 23 CHAPTER 3 ANALYSIS OF BIDIRECTIONAL DC-DC CONVERTER 27 3.1 Introduction of Bidirectional DC-DC Converter 27 3.2 Operating Principle of Bidirectional DC-DC Converter 29 3.2.1 Step-up Mode 29 3.2.2 Step-down Mode 33 3.3 Steady State Analysis 37 3.4 Voltage and Current Stresses of Switch 39 3.5 Inductor Design 40 3.6 Capacitor Design 41 3.7 Control-to-Output Bode Plot 46 3.8 Control Circuit Design 43 3.9 Analysis of Control Circuit 45 3.10 Digital Compensation Circuit 46 CHAPTER 4 PARAMETER DESIGN AND EXPERIMENTAL RESULTS 59 4.1 System Specification 59 4.2 Parameters Design of the Bidirectional Converter 59 4.3 The Selection of Power Switches 61 4.4 Experimental Results 64 4.4.1 Experimental Specification 64 4.4.2 Waveforms of Step-Up Mode 66 4.4.3 Waveforms of Step-Down Mode 68 4.4.4 Load Transient of Step-Up Mode 71 4.4.5 Load Transient of Step-Down Mode 72 4.5 Efficiency 73 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 74 5.1 Conclusions 74 5.2 Future Works 75 References 76

    [1] K. Tytelmaier, O. Husev, O. Veligorskyi, and R. Yershov, "A Review of Non-isolated Bidirectional DC-DC Converters for Energy Storage Systems," 2016 II International Young Scientists Forum on Applied Physics and Engineering (YSF), pp. 22-28, 2016.
    [2] J. S. Lai and D. J. Nelson, "Energy Management Power Converters in Hybrid Electric and Fuel Cell Vehicles," Proceedings of the IEEE, Vol. 95, No. 4, pp. 766-777, Apr. 2007.
    [3] M. A. Abdullah, A. H. M. Yatim , C. W. Tan , and A. S. Samosir "Control of a Bidirectional Converter to Interface Ultracapacitor with Renewable Energy Sources," 2013 IEEE International Conference on Industrial Technology (ICIT), pp. 673-678, 2013.
    [4] L. Schuch, C. Rech, H. L. Hey, H. A. Grundlinggrundling, H. Pinheiro, and J. R. Pinheiro, "Analysis and Design of a New High-Efficiency Bidirectional Integrated ZVT PWM Converter for DC-Bus and Battery-Bank Interface," IEEE Transactions on Industry Applications, Vol. 42, No. 5, pp. 1321-1332, Sept.-Oct. 2006.
    [5] M. Kwon and S. Choi, "Control Scheme for Autonomous and Smooth Mode Switching of Bidirectional DC-DC Converters in a DC Microgrid," IEEE Transactions on Power Electronics, Vol. 33, No. 8, pp. 7094-7104, Aug. 2018.
    [6] A. Kulshreshtha, A. R. Saxena, and M. Veerachary, "Nonisolated Fourth-Order Boost DC-DC Converter for Power Management in Low Voltage Low Power DC Grids: Design and Interaction Analysis," IEEE Access, Vol. 8, pp. 196500-196514, 2020.
    [7] H. Jahanghiri, S. Rahimi, A. Shaker, and A. Ajami, "A High Conversion Non-Isolated Bidirectional DC-DC Converter with Low Stress for Micro-Grid Applications," 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), pp. 775-780, 2019.
    [8] M. S. Bhaskar, V. K. Ramachandaramurthy, S. Padmanaban, F. Blaabjerg, M. Mitolo, and D. Almakhles, "Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in Fuel Cell Vehicles," IEEE Access, Vol. 8, pp. 178130-178166, Sept. 2020.
    [9] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji; F. Blaabjerg, and B. Lehman, "Step-Up DC-DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications," IEEE Transactions on Power Electronics, Vol. 32, No. 12, pp. 9143-9178, Dec. 2017
    [10] C. M. Lai, Y. C. Lin, and Y. J. Lin, "Newly-Constructed Bidirectional DC/DC Converter Topology with High Voltage Conversion Ratio for Vehicle to DC-Microgrid (V2DCG) System," 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), 2015.
    [11] S. Jahdi, O. Alatise, R. Bonyadi, P. Alexakis, C. A. Fisher, J. A. O. Gonzalez, L. Ran, and P. Mawby, "An Analysis of the Switching Performance and Robustness of Power MOSFETs Body Diodes: A Technology Evaluation," IEEE Transactions on Power Electronics, Vol. 30, No. 5, pp. 2383-2394, May 2015.
    [12] M. A. Salvador, T. B.Lazzarin, and R. F. Coelho, "High Step-Up DC-DC Converter With Active Switched-Inductor and Passive Switched-Capacitor Networks," IEEE Transactions on Industrial Electronics, Vol. 65, No. 7, pp. 5644-5654, Jul. 2018.
    [13] W. Li and X. He, “Review of Non-Isolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 4, pp. 1239-1250, Apr. 2011.
    [14] M. S. Bhaskar, S. Padmanaban, and F. Blaabjerg, "A Multistage DC-DC Step-Up Self-Balanced and Magnetic Component-Free Converter for Photovoltaic Applications: Hardware Implementation," Energies, Vol. 10, No. 5, May 2017.
    [15] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC-DC PWM Converters," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 55, No. 2, Mar. 2008.
    [16] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switched-Capacitor (SC)/Switched Inductor (SL) Structures for Getting Hybrid Step-Down Cuk/Sepic/Zeta Converters," 2006 IEEE International Symposium on Circuits and Systems, pp. 5063-5066, May 2006.
    [17] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, "A Survey on Voltage Boosting Techniques for Step-Up DC-DC Converters," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1-6, Sept. 2016.
    [18] D. Navamani, K. Vijayakumar, R. Jegatheeesanm, and A. Lavanya, "High Step-Up DC-DC Converter by Switched Inductor and Voltage Multiplier Cell for Automotive Applications," Journal of Electrical Engineering and Technology, Vol. 11, pp. 1921-1935, Apr. 2016.
    [19] Y. Tang and T. Wang, "Study of an Improved Dual-Switch Converter with Passive Lossless Clamping," IEEE Transactions on Industrial Electronics, Vol. 62, No. 2, pp. 972-981, Feb. 2015.
    [20] Y. Tang, D. Fu, T.Wang, and Z. Xu, "Hybrid Switched-Inductor Converters for High Step-Up Conversion," IEEE Transactions on Industrial Electronics, Vol. 62, No. 3, pp. 1480-1490, Mar. 2015.
    [21] L. S. Yang, T. J. Liang, and J. F. Chen, "Transformerless DC-DC Converters with High Step-Up Voltage Gain, " IEEE Transactions on Industrial Electronics, Vol. 56, No. 8, pp. 3144-3152, Aug. 2009.
    [22] S. Musumeci, "Gate Charge Control of High-Voltage Silicon-Carbide (SiC) MOSFET in Power Converter Applications," 2015 International Conference on Clean Electrical Power (ICCEP), 2015.
    [23] R. Semicondutor, "SiC Power Devices and Modules, Application Note," https://fscdn.rohm.com/en/products/databook/applinote/discrete/sic/common/sic_appli-e.pdf, Nov. 2020.
    [24] Y. Zhang, "Comparison Between Competing Requirements of GaN and SiC Family of Power Switching Devices," IOP Conference Series: Materials Science and Engineering, Vol. 738, No.1, 2020.
    [25] P. Paniyil and R. Singha, "Emerging Role of Silicon Carbide and Gallium Nitride Based Power Electronics in Power and Transportation Sectors," ECS Transactions, Vol. 92, No. 7, Jul. 2019.
    [26] 王信雄博士,“開關轉換器控制理論與設計實務” ,立錡科技。
    [27] Analog Devices, AD7276, 2005, datasheet.
    [28] 吳義利,“切換式電源轉換器:原理與實用設計技術(實例設計導向)”,文笙書局股份有限公司。
    [29] E. Mamarelis, G. Petrone, and G. Spagnuolo, "An Hybrid Digital-Analog Sliding Mode Controller for Photovoltaic Applications," IEEE Transactions on Industrial Informatics, Vol. 9, No. 2, pp. 1094-1103, May. 2013.
    [30] IXYS, IXKH30N60C5, 2009, datasheet.
    [31] CREE, C3M0060065D, 2021, datasheet.

    無法下載圖示 校內:2027-08-01公開
    校外:2027-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE