| 研究生: |
饒仁郁 Jao, Jen-yu |
|---|---|
| 論文名稱: |
應用去嵌入式技術於單細胞阻抗之射頻量測 Single Cell Impedance Measurement Using De-embedding Technique at Radio Frequency |
| 指導教授: |
張凌昇
Jang, Ling–Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 共平面波導 、細胞阻抗 、微機電 、生醫檢測 、射頻 |
| 外文關鍵詞: | cell impedance, MEMS, bio-detection, radio-frequency, coplanar waveguide |
| 相關次數: | 點閱:71 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於進行細胞阻抗量測時,若使用的頻率範圍屬低頻段,電流只會沿細胞外圍流動,如此造成無法有效得知細胞器內是否發生異常、甚至是細胞核的病變。然而為了改善低頻量測的缺點,本論文結合了微流道單一細胞捕捉結構與利用共平面波導技術所設計之微電極,並於射頻下的網路分析進行單一子宮頸癌細胞阻抗量測;且為了提高量測的準確度,本論文利用了去嵌入式校正技術將量測平面移至待測細胞。本研究結合了雙面電路板與玻璃玻片兩種不同基底之結構來完成單一細胞的分析,其中雙面電路板做為外框並藉由SMA接頭與網路分析儀進行連接,玻璃玻片則利用微機電製程技術製作一雙埠微電極做為單一細胞之量測。至今,本研究所提出之結構經證實已可分辨不同濃度之氯化鈉與各種不同之溶液,更能於等張溶液內分辨出細胞之有無。
When an electrical current with a low frequency is applied to a single cell, the pathological change of a cellular organelle that takes place inside the cell cannot be determined. To overcome the shortcomings of low frequency measurement, this paper combines a microfluidic device to capture single cells and a coplanar waveguide electrode inside a channel to measure the impedance of a single HeLa cell (human cervical epithelioid carcinoma) over the frequency range of 1 MHz to 1 GHz. The on-chip calibration technique is used to characterize the compound device. The technique improves the calibration accuracy by shifting the calibration reference plane to the de-embedding reference plane. This work presents a compound conductor backed coplanar waveguide (CBCPW) device which integrates two substrates for impedance analysis at the single-cell level. The outside part of the compound CBCPW is the FR4 substrate as the connection interface of a vector network analyzer (VNA) using a SubMiniature-A (SMA) connector. The inside part of the CBCPW is a glass substrate with electrodes to measure the impedance of a single cell. Various applications are demonstrated, including sodium chloride solutions with various concentrations, de-ionized (DI) water, alcohol, PBS, and a single HeLa cell. Equivalent circuit models of PBS and a single cell are used to explain the experimental impedance data.
[1] McCoy MH, Wang E, Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza a virus infected MDCK cells in real-time. Journal of Virological Methods 130, 157–161, 2005.
[2] Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S, Skin cancer identification using multifrequency electrical impedance - A potential screening tool. IEEE Trans. Biomed. Eng. 51, 2097–2102, 2004.
[3] Huang X, Greve DW, Nguyen DD, Domach MM, Proc, Impedance Based Biosensor Array for Monitoring Mammalian Cell Behavior, IEEE Sens. 1, 304–309, 2003.
[4] Pething R and Kell DB, The passive electrical properties of biological systems: their significance in physiology. biophysics and biotechnology.Phys. Med. Biol. 933–970, 1987.
[5] Heiskanen AR, Spegel CF, Kostesha N, Ruzgas T, Emneus J, Monitoring of Saccharomyces cerevisiae cell proliferation on thiol-modified planar gold microelectrodes using impedance spectroscopy. Langmuir 24: 9066-9073, 2008.
[6] Lohndorf M, Schlecht U, Gronewold TMA, Malave A, Tewes M, Microfabricated high-performance microwave impedance biosensors for detection of aptamer-protein interactions. Appl. Phys. Lett. 87: 243902, 2005.
[7] Messina TC, Dunkleberger LN, Mensing GA, Kalmbach AS, Weiss R, Beebe DJ, and SohnA LL, Novel high-frequency sensor for biological discrimination. The 7th International Conference on Micro Total Analysis Systems, 2003.
[8] Gabriel S, Lau RW, and Gabriel C, The dielectric properties of biological tissues: n. Mesurements in the frequency range 10 Hz to 20 GHz. Phys. Med Bioi., vol. 41, pp. 2251-2269, 1996.
[9] Raj A, Holmes WS, and Judah SR, Wide bandwidth measurement of complex permittivity of liquids using coplanar lines. IEEE Trans. Instrum. Meas., vol. 50, No.4, 2001.
[10] Stuchly SS and Bassey CE, Microwave coplanar sensors for dielectric measurements. Meas. Sci. Techno, vol.9, pp. 13241329, 1998.
[11] Simon RN, Coplanar waveguide circuits, components, and systems, 2001.
[12] Senez V, Lennon E, Ostrovidov S, Yamamoto T, Fujita H, Sakai Y, and Fujii T. Integrated 3-D silicon electrodes for electrochemical sensing in microfluidic environments: Application to single-cell characterization. IEEE sensors journal, VOL. 8, NO. 5, 2008.
[13] Wen CP, Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications. IEEE Transactions on Microwave Theory and Techniques, vol. 17, pp. 1087-1090, 1969.
[14] Shih YC and Itoh T, Analysis of conductor-backed coplanar waveguide. Electronics Letters, vol. 18, pp. 538-440, 1982.
[15] "HFSS," Ansoft Corporation, Pittsburg, Pennsylvania.
[16] "AppCad," Agilent Technologies.
[17] Bedair SS, Wolff I, Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for MMIC's. IEEE T. Microw. Theory 40(1): 41-48, 1992.
[18] Malherbe JAG, Steyn AF, Compensation of step discontinuities in TEM-mode transmission lines. IEEE T Microw. Theory 26(11): 883-885, 1978.
[19] Jang LS, Wang WH, Microfluidic device for cell capture and impedance measurement. Biomedical Microdevices 9(5): 737-743, 2007.
[20] Schuy S, Janshoff A, Microstructuring of phospholipid bilayers on gold surfaces by micromolding in capillaries. J. Colloid Interf. Sci. 295(1): 93-99, 2006.