簡易檢索 / 詳目顯示

研究生: 林世騰
Lin, Shih-Teng
論文名稱: 探討多層透明導電薄膜氧化鋅/銦錫氧化物/氧化鋅其結構及光電特性
The study of microstructures and optoelectronic characteristics of transparent conductive ZnO/ITO/ZnO multilayer films
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 60
中文關鍵詞: 透明導電薄膜
外文關鍵詞: transparent conductive multilayer thin film
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,主要使用最近相當熱門的II-VI族寬能隙半導體氧化鋅(ZnO)及銦錫氧化物(ITO),以射頻濺鍍技術(RF Sputtering system)在玻璃基板上製作多層透明導電薄膜”氧化鋅/銦錫氧化物/氧化鋅”作為研究主軸。論文主要分為二個部份:第一部份為電子傳輸層-銦錫氧化物(ITO)的研究。製作完成三層透明導電薄膜,接著在通氮氣的環境下以500℃回火60分鐘,分析後發現(霍爾量測、穿透率等儀器),隨著 ITO層的增加,電阻率有明顯的改善,大約可下降一到二個數量級,而且在可見光的範圍內(380~800 nm)仍維持在80 %以上高穿透率。第二部份為討論三層透明導電薄膜在不同的熱處理條件下(氣體環境、回火溫度及時間等條件)其結晶及光電特性的影響為何。研究結果發現,真空環境下(9×10-2 torr),熱處理溫度及時間分別為500℃及80分鐘下,可獲得較佳的多層透明導電薄膜品質(電阻率8.83×10-3 Ω-cm;載子移動率7.64 cm2/V-s;及在可見光範圍內的平均穿透率86 %)。另外,多層透明導電薄膜在長時間操作在工作溫度下(24hr,120℃),其電阻率及載子移動率皆有明顯的改善(1.58×10-3 Ω-cm,10.8 cm2/V-s)。

    In this study, multilayer transparent conductive ZnO/ITO/ZnO thin films were
    deposited by radio frequency (RF) sputtering technology. The investigation has two
    subjects:
    Subject I: This part is the study of the investigation of electronic transmission
    layer (ITO). After fabricated tri-layer transparent conductive thin films, the samples
    were annealed at 500℃ for 60 minutes under N2 ambient. It clearly observed the resistivity of TCO films was improved with increment of ITO layer. In addition, the average transparency for visible region (380 to 800 nm) was more than 80 %.
    Subject II: The effect of post-annealing treatment (gas ambient, temperature and
    duration time) on structural characteristics and optoelectronic properties of multi-layer TCO films.
    It was found that the better transparent conductive multilayer thin film characteristics of resistivity was 8.83×10-3 Ω-cm, mobility was 7.64 cm2/V-s and average transmittance was 86 % at 500℃ for duration time 80 minutes under vacuum (9×10-2 torr). Besides, the transparent conductive multilayer thin films were operated
    for a long duration time. It could be seen that the TCO films were improved with clear
    improvement of resistivity 1.58×10-3 Ω-cm and mobility 10.8 cm2/V-s.

    Abstract (Chinese) .......................................................I Abstract (English).........................................................III Contents....................................................................VI Table Captions............................................................VIII Figure Captions.............................................................IX Chapter1 Introduction.......................................................1 1-1 Background............................................................1 1-2 Organization..........................................................4 Chapter2 Fabrication systems and measurement systems.......................10 2-1 RF sputtering system.....................................................................10 2-2 Hall measurement..........................................................................11 2-3 X-ray diffraction............................................................................12 2-4 Atomic Force Microscope System.................................................12 2-5 Scanning Electron Microscope (SEM)...........................................13 Chapter 3 The Fabrication and Characteristics of Multilayer (ZnO/ITO/ZnO) TCO Thin Film........................................................................19 3-1 Introduction.............................................................................19 3-2 The effects of ITO thickness on TCO films............................19 3-2-1 Structural characteristics....................................................20 3-2-2 Optical properties...............................................................21 3-2-3 Electrical properties...........................................................22 3-3 The effects of different atmosphere.........................................22 3-3-1 Structural characteristics.....................................................23 3-3-2 Optical properties................................................................23 3-3-3 Electrical properties............................................................24 3-4 The effects of different temperature.........................................24 3-4-1 Structural characteristics.....................................................24 3-4-2 Optical properties................................................................25 3-4-3 AFM Measurement.............................................................25 3-4-4 Electrical properties.............................................................26 3-5 The effects of duration time......................................................26 3-5-1 Structural characteristics......................................................27 3-5-2 Optical properties.................................................................27 3-5-3 Electrical properties..............................................................27 3-6 Thermal fatigue effects..............................................................28 3-6-1 Electrical properties..........................................................28 Chapter 4 Conclusions......................................................................52 Chapter 5 Future Works...................................................................54 Reference............................................................................................55

    [1] A. Mosbah, S. Abed, N. Bouhssira, M.S. Aida, E. Tomasella, Mater. Sci.Eng., B 129, 144 (2006).
    [2] S. H. Park, H.M. Kim, B. R. Rhee, E. Y. Ko, S. H. Shon, Jpn. J. Appl. Phys. 40, 1929 (2001).
    [3] Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, J. R. Lee, Thin Solid Films 411, 12 (2002).
    [4] G. B. Palmer, K. R. Poeppelmeier, Solid State Sci. 4, 317 (2002).
    [5] M. Fahland, P. Karlsson, C. Charton, Thin Solid Films 392, 334 (2001).
    [6] Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, J. R. Lee, Thin Solid Films 411, 12 (2002).
    [7] S. Calnan, J. Hupkes, B. Rech, H. Siekmann, AN. Tiwari, Thin Solid Films 516, 1242 (2008).
    [8] C. Adachi, K. Nagai, N. Tamoto, Appl Phys Lett 66, 2679 (1995).
    [9] J. Kido, K. Hongawa, K. Pkuyama, K. Nagai, Appl Phys Lett 68, 217 (1996).
    [10] A. Rajagopal, A. Khan, J Appl Phys 84, 355 (1998).
    [11] Y. He, J. Kanicki, Appl Phys Lett 76, 661 (2000).
    [12] MRS Bulletin 25, Special Issue on Transparent Conducting Oxides
    Edited by D.S. Ginley 2002 (2005).
    [13] H. Hosono, H. Ohta, M. Orita, K. Ueda, M. Hirano, Vac. 66, 419 (2002).
    [14] E. J. J. Martin, M. Yan, M. Lane, J. Ireland, C. R. Kannewurf, R. P. H. Chang, Thin Solid Film 461, 309 (2004).
    [15] K. Y. Zeng, F. R. Zhu, J. Q. Hu, L. Shen, K. R. Zhang, H. Gong, Thin Solid Films 443, 60 (2003).
    [16] J. M. Tingw, C. K. Lin, J. Am. Ceramic Soc. 89(12), 3676 (2006).
    [17] H. Han, D. Adams, J. W. Mayer, and T. L. Alford, J. Appl. Phys. 98, 083705 (2005).
    [18] E. J. J. Martin, Y. Yan, M. Lane, J. Ireland, C. R. Kannewurf, and R. P. H. Chang, Thin Solid Films 461, 309 (2004).
    [19] J. H. Lee, S. Y. Lee, B. O. Park, Mater. Sci. Eng., B 127, 267 (2006).
    [20] M. Osada, T. Sakemi, T. Yamamoto, Thin Solid Film 494, 38 (2006).
    [21] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferrira, M. E. V. Costa, R. Martins, Thin Solid Films 427, 401 (2003).
    [22] S. S. Lin, J. L. Huang, P. Sajgalik, Surf. Coat. Technol. 185, 254 (2000).
    [23] G. Hu, B. Kumar, H. Gong, E.F. Chor, P. Wu, App. Phys. Lett. 88, 101901 (2006).
    [24] V. Bhosle, J. T. Prater, F. Yang, D. Burk, S. R. Forrest, and J. Narayan, J. Appl. Phys. 102, 023501 (2007).
    [25] T. Kawashima, T. Ezure, K. Okada, H. Matsui, K.Goto, N. Tanabe, J. Photochem. Photobiol.-A 164, 199 (2004).
    [26] E. J. J. Martin, M. Yan, M. Lane, J. Ireland, C. R. Kannewurf, R. P. H. Chang, Thin Solid Film 461, 309 (2004).
    [27] A. Kloppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, J. Trube, Thin Solid Films 365, 139 (2000).
    [28] A. Kloppel, M. Meyer, J. Trube, Thin Solid Films 392, 311 (2001).
    [29] M. Sawada, M. Higuchi, S. Kondo, H. Saka, Jpn. J. Appl. Phys. 40, 3332 (2001).
    [30] H. Han, N. D. Theodore, T. L. Alford, Journal of Applied Physics 103, 01378-1 (2008).
    [31] Chongmu Lee, R. P. Dwivedi, Wangwoo Lee, Chanseok Hong, Wan In Lee, Hyoun Woo Kim, J Master Electron 19, 981 (2008).
    [32] T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, S. Han, Vacuum, in press 1 (2008).
    [33] T. Nakamura, Y. Yamada, T. Kusumori, H. Minoura, “Improvement in the crystallinity of ZnO thin films by introduced of a buffer layer”, Thin Solid Films 411, 60 (2002).
    [34] L. Xu, Y. Su, Y. Q. Chen, H. H. Xiao, L. A. Zhu, Q. T. Zhou, S. Li, J. Phys. Chem. B 110, 6637 (2006).
    [35] K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films 102, 1 (1983).
    [36] S. S. Lin, J. L. Huang, D. F. Lii, Mater. Chem. Phys. 90, 22 (2005).
    [37] D. Song, A. G. Aberle, J. Xia, Appl. Surf. Sci. 195, 291 (2002).
    [38] J. Hu, R.G. Gordon, J. Appl. Phys. 71, 880 (1991).
    [39] T. Inukai, M. Matsuoka, K. Ono, Thin Solid Films 257, 22 (1995).
    [40] V. Craciun, J. Elders, J. G. E. Gardeniers, J. Geretovsky, I. W. Boyd, Thin Solid Films 259, 1 (1995).
    [41] L. J. Meng, M. P. Dos Santos, Thin Solid Films 250, 26 (1994).
    [42] T. K. Subramanyam, B. Srinivasulu Naidu, S. Uthanna, Cryst. Res. Technol. 8(34), 981 (1999).
    [43] D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, and J. R. Sizelove, Appl. Phys. Lett. 75, 811 (1999).

    [44] A. Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P.Yu, Z. K. Tang, G. K. Wong, and Y. Segawa, Mater. Sci. Eng. B54, 24 (1998).
    [45] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 110, 225 (2001).
    [46] D. Basak, G. Amin, B. Mallik, G.K. Paul, and S.K. Sen, J. Cryst. Growth 73, 256 (2003).
    [47] W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, and T. Venkatesan, Appl. Phys. Lett. 78, 2787 (2001).
    [48] M. Liu and H. K. Kim, Appl. Phys. Lett. 84, 173 (2004).
    [49] X.G. Zheng, Q.Sh. Li, and J.P. Zhao, Appl. Surf. Sci. 253, 2264 (2006).
    [50] Z.Q. Xu, H. Deng, and J. Xie, Appl. Surf. Sci. 253, 476 (2006).
    [51] R. K. Watts, “Planar Magnetron Sputtering” in J. L. Vossen and W. Kern, eds. Thin Solid Film processes, Academic, New York, pp131-174 (1978).
    [52] C. Y. Chang and S. M. Sze, ULSI technology, p380.
    [53] J. L.Vossen, J. J. Cuomo, Thin Film Processes, p24, (1978).
    [54] S. I. Shah, Handbook of Thin Film Process Tcchnology P.A3.0.1.
    [55] S. M. Sze, VLSI Technology, p387.
    [56] M. Jin, J. Feng, Z. De-Heng, M. Hon-Hlei, L. Shu-Yang, Thin Solid Films 357, 98 (1999).
    [57] V. Musat, B. Teixeira, E. Fortunato, R. C. C. Monteiro, P. Vilarinho, Surf. Coat. Technol. 180/181, 659 (2004).
    [58] H.M. Suarez, A. Maldonado, M.D.L. Olvera, A. Reyes, R.C. Perez, G.T.Delgado, R. Asomoza, Appl. Surf. Sci 193, 52 (2002).
    [59] J. Mass, P. Bhattacharya, R. S. Katiyar, Mater. Sci. Eng. B 103, 9 (2003).
    [60] J. Aronovich, A. Ortiz, R. H. Bube, J. Vac. Sci. Technol. 16, 994 (1979).
    [61] S. A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 87, 2413 (2000).
    [62] J. Hu, R. Gordon, Sol. Cells 30, 437 (1991).
    [63] S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, K. S. Lim, Jpn. J. Appl. Phys. Part 230, 1152 (1991).
    [64] F. K. Shan, B. C. Shin, S. W. Jang, Y. S. Yu, J. Eur. Ceram. Soc. 24, 1015 (2004).
    [65] K. L. Narasimhan, S. P. Pai, V. R. Palkar, R. Pinto, Thin Solid Films 295, 104 (1999).
    [66] Y. Nakanishi, A. Miyake, H. Kominami, Appl. Surf. Sci. 142, 233 (1999).
    [67] K. Haga, M. Kamidaira, Y. Kashiwaba, T. Sekiguchi, H. Watanabe, J. Crystallogr. Growth 214, 77 (2000).
    [68] A. E. Jimenez-Gonzalez, J. A. Soto-Urueta, R. Suarez-parra, J. Crystallogr. Growth 192, 430 (1998).
    [69] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka, G. Shimaoka, Appl. Surf. Sci. 142, 23 (1999).
    [70] T. Ohgaki, N. Ohashi, H. Kakemoto, S. Wada, Y. Adachi, H. Haneda, T. Tsurumijap, J. Appl. Phys. 93, 1961 (2003).
    [71] M. S. Wu, W. C. Shin, W. H. Tsai, J. Phys. D Appl. Phys. 31, 943 (1998).
    [72] D.R. Sahu, J.L. Huang, Appl. Surf. Sci., in press.
    [73] P. Nunes, D. Costa, E. Fortunato, R. Martins, Vacuum 64, 293 (2002).
    [74] G. J. Fang, D. Li, B. L. Yao, Thin Solid Films 418, 156 (2002).
    [75] S. S. Lin, J. L. Huang, P. Sajgalik, Surf. Coat. Technol. 185, 254 (2004).
    [76] S. S. Shinde, P. S. Shinde, C. H. Bhosale, K. Y. Rajpure, J. Phys. D: Appl. Phys. 41, 105109 (2008).
    [77] M. R. Vaezi, S. K. Sadrnezhaad, Mater. Sci. Eng. B 141, 23 (2007).
    [78] D. R. Sahu, S. Y. Lin, J. L. Huang, Applied Surface Science 252, 7509 (2006).

    下載圖示 校內:2010-01-20公開
    校外:2011-01-20公開
    QR CODE