簡易檢索 / 詳目顯示

研究生: 黃啟翔
Huang, Chi-Hsiang
論文名稱: 混合漣波適應性導通時間控制之升壓型直流-直流轉換器設計
Design of a Mixed-Ripple Adaptive On-Time Boost DC-DC Converter
指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 82
中文關鍵詞: 適應性導通時間控制漣波控制升壓轉換器
外文關鍵詞: Adaptive on-time, Ripple-based control, Boost converter
相關次數: 點閱:109下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,適應性導通時間 (Adaptive on-time) 控制受到許多關注及青睞,因為其架構簡易同時在寬負載範圍下有極高的效率,然而適應性導通時間控制之升壓轉換器操作在連續導通模式 (Continuous conduction mode) 時,通常需要補償網路,這些補償網路可能需要外部元件或是佔據內部晶片相當大的面積。因此,本論文提出混合漣波適應性導通時間控制,利用混合電感電流漣波及輸出電壓漣波的方式以取代補償網路。另外,提出一種新的最高電位選擇器,其架構簡易同時能輔助轉換器啟動。
    本晶片使用台灣積體電路公司0.18 μm 1P6M混合訊號製程製作,晶片尺寸約為878 μm × 1002.3 μm。本電路之輸入電壓範圍為0.8-1.4 V,輸出電壓調節在1.8 V,在輸入電壓為1.4 V時,最大輸出電流為400 mA。並且本轉換器之最低啟動電壓為0.43 V,最高效率可達92.4%。

    In recent years, adaptive on-time (AOT) controls have drawn more and more attention because of its simple structure and high efficiency within a wide load range. However, the AOT-controlled boost converters working in continuous conduction mode (CCM) usually require compensator networks, which may require off-chip components or occupy large chip area. Thus, a mixed-ripple AOT boost converter is proposed. By mixing the ripples of inductor current and the output voltage of the converter, the compensator is no longer required. Furthermore, a novel and simple supply voltage selector is proposed, which is capable of assisting the startup procedure.
    The proposed chip was fabricated by TSMC 0.18μm CMOS mixed-signal process, and the chip size is 878 μm × 1002.3 μm. The input voltage range is set from 0.8 V to 1.4 V, and the output voltage is set to 1.8 V with a 400-mA maximal load current at 1.4-V input voltage. Moreover, the minimal startup voltage is 0.43 V, and the measured peak efficiency is 92.4%.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 Literature Review 3 2.1 Boost Converter Fundamentals 3 2.1.1 Power Stage of Boost Converter 3 2.1.2 The ripple of Boost Converter 5 2.1.3 Control Method 8 2.2 Recent Research 15 2.2.1 PFM Control with Near-threshold Startup Voltage 15 2.2.2 Switch-mode Quasi-V2 Hysteretic (SMQH) Control 16 2.2.3 Fast Transient with Delta-sigma Controller 18 2.2.4 The Summary of Recent Research 20 Chapter 3 System Structure and Circuit Implementation 21 3.1 Specification 21 3.2 System Structure 22 3.3 System Verification 25 3.4 Block Diagram 27 3.4.1 On-time Generator 28 3.4.2 Current Sensor 30 3.4.3 Bandgap Reference Circuit 32 3.4.4 Supply Voltage Selector 35 3.4.5 Zero Current Detector 37 3.4.6 AOT Controller 39 3.4.7 Dead-time Controller 42 3.4.8 Anti-ringing Circuit 44 3.5 Start-up Procedure of System 45 3.5.1 Initial State 45 3.5.2 Closed-loop state 45 Chapter 4 Simulation Results and Layout Consideration 47 4.1 Simulation Results 47 4.1.1 Startup Procedure 47 4.1.2 Steady State 49 4.1.3 Load Transient 52 4.1.4 Simulation of Efficiency 54 4.2 Layout Consideration 55 4.3 Bonding Wire Diagram 57 Chapter 5 Measurement Results 60 5.1 Measurement Environment and Considerations 60 5.2 Measurement Result 64 5.2.1 Startup Procedure 64 5.2.2 Steady State 66 5.2.3 Load Transient 70 5.3 Regulations and Output Ripple 72 5.4 Efficiency 75 5.5 Performance and Comparison 76 Chapter 6 Conclusions and Future Work 79 Reference 80

    [1] C.-Y. Leung, P. K. T. Mok, and K.-N. Leung, “A 1-V Integrated Current-Mode Boost Converter in Standard 3.3/5-V CMOS Technologies,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2265–2274, Nov. 2005.
    [2] C.-Y. Wang, J.-S. Guo, C.-Y. Huang, and C.-H. Tsai, “A High Efficiency DC/DC Boost Regulator with Adaptive Off/On-Time Control,” in Proc. IEEE International Symposium on VLSI Design, Automation & Test, Apr. 2013, pp. 1–4.
    [3] H.-H. Wu, C.-L. Wei, Y.-C. Hsu, and R. B. Darling, “Adaptive Peak-Inductor-Current Controlled PFM Boost Converter with a Near-Threshold Startup Voltage and High Efficiency,” IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1956–1965, Apr. 2015.
    [4] X. Jing and P. K. T. Mok, “A Fast Fixed-Frequency Adaptive-On-Time Boost Converter With Light Load Efficiency Enhancement and Predictable Noise Spectrum,” IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2442–2456, Oct. 2013.
    [5] L. Cheng, J. Ni, Y. Qian, M. Zhou, W.-H. Ki, B.-Y. Liu, G. Li, and Z. Hong, “On-Chip Compensated Wide Output Range Boost Converter with Fixed-Frequency Adaptive Off-Time Control for LED Driver Applications,” IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 2096–2107, Apr. 2015.
    [6] S. Liu, X. Wu, F. Yuan, and M. Zhao, “An Adaptive On-Time Controlled Boost LED Driver with High Dimming Ratio,” in Proc. 38th Annual Conference on IEEE Industrial Electronics Society, Oct. 2012, pp. 210–214.
    [7] W.-H. Ki, K.-M. Lai, and C. Zhan, “Charge Balance Analysis and State Transition Analysis of Hysteretic Voltage Mode Switching Converters,” IEEE Transactions on Circuit and Systems –I: Regular Papers, vol. 58, no. 5, pp. 1142–1153, May, 2011.
    [8] X.-E. Hong, J.-F. Wu, and C.-L Wei, “98.1%-Efficiency Hysteretic-Current-Mode Non-Inverting Buck–Boost DC–DC Converter with Smooth Mode Transition,” IEEE Transactions on Power Electronics, accepted.
    [9] J.-C. Tsai, C.-L. Chen, Y.-H. Lee, H.-Y. Yang, M.-S. Hsu, and K.-H. Chen, “Modified Hysteretic Current Control (MHCC) for Improving Transient Response of Boost Converter,” IEEE Transactions on Circuit and Systems –I: Regular Papers, vol. 58, no. 8, pp. 1967–1979, Aug, 2011.
    [10] L. Cheng, J. Ni, Z. Hong, and B. Y. Liu, “A Constant Off-time Controlled Boost Converter with Adaptive Current Sensing Technique,” in Proc. IEEE European Solid-State Circuits Conf., Sep. 2011, pp. 443–446.
    [11] Y. Wang and D. Ma, “A 450-mV Single-Fuel-Cell Power Management Unit With Switch-Mode Quasi-V2 Hysteretic Control and Automatic Startup on 0.35-μm Standard CMOS Process,” IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2216-2226, Sep. 2012.
    [12] Y.-S. Hwang, J.-J. Chen, B.-H. Lai, Y.-T. Ku, and C.-C. Yu, “A Fast-Transient Boost Converter With Noise-Reduction Techniques for Wireless Sensor Networks,” IEEE Sensor Journal, vol. 16, no. 9, pp. 3188-3197, May. 2016.
    [13] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nded. Norwell, MA: Kluwer Academic, 2001.
    [14] E. Sackinger and W. Guggenbuhl, “A versatile building block: The CMOS differential difference amplifier,” IEEE Journal of Solid-State Circuits, vol. SC-22, no. 2, pp. 287–294, Apr. 1987.
    [15] Y.-C. Hsu, “A boost converter with wide input voltage range and low startup voltage,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Aug. 2011.
    [16] R. B. Ridley, “A New Continuous-time Model for Current-mode Control with Constant Frequency, Constant On-time, and Constant Off-time, in CCM and DCM,” in Proc. 21st IEEE Conference on Power Electronics Specialists, Aug. 1990, pp. 382–389.
    [17] Y.-P. Su, Y.-K. Luo, Y.-C. Chen, and K.-H. Chen. “Current-Mode Synthetic Control Technique for High-Efficiency DC–DC Boost Converters Over a Wide Load Range,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 8, pp. 1666–1678, Aug, 2014.
    [18] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2011.
    [19] W. M. C. Sansen, Analog Design Essentials. Dordrecht, Netherland: Springer, 2008.

    無法下載圖示 校內:2022-01-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE