| 研究生: |
塗明隆 Tu, Ming-Lung |
|---|---|
| 論文名稱: |
以2,3-dibutoxy-1,4-poly(phenylene vinylene) (DB-PPV)為發光層之高分子聚合物有機發光二極體的材料與元件之研究 The device and material characteristics of polymer light emitting diode based on 2,3-dibutoxy-1,4-poly(phenylene vinylene) (DB-PPV) |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 回火 、有機高分子聚合物發光二極體 |
| 外文關鍵詞: | Polymer Light-Emitting Diode (PLED), Annealing |
| 相關次數: | 點閱:52 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中, 我們製成以高分子聚合物
2,3-dibutoxy-1,4-poly(phenylene vinylene) (DB-PPV)為發光層的有機高分子聚合物發光二極體 (PLED),首先找出最佳形成發光層薄膜的有機溶液的比例及旋轉塗佈法的轉速因素,然後再利用不同溫度回火的方法,加於有機發光層薄膜及製成的元件,並針對回火完的薄
膜與元件的特性加以討論,找尋最佳的元件回火溫度。
我們採用兩層高分子聚合物的結構(double layer structure)製作PLED 。一層高分子以導電薄膜
poly(3,4-ethylenedioxythiophene)–poly(4-styrene sulfonate) (PEDOT) 為電洞傳輸層(Hole Transferring Layer),厚度為120nm,另一層高分子以DB-PPV 為發光層(Light-emitting Layer)。在最佳形成發光層薄膜的有機溶液的比例及旋轉塗佈法的轉速因素下其厚度為50nm,整個PLED結構為ITO/PEDOT/DB-PPV/Ca/Al。在旋轉塗佈完DB-PPV 後,以四個不同的溫度分別為90°C、120°C、150°C 與180°C 加於DB-PPV 有機薄膜(pre-annealing) 與製成PLED 元件(post-annealing)作為回火之研究。從FTIR、AFM與橢圓儀的量測結果,DB-PPV高分子的主鏈及側鏈由於回火的因故而位移,其薄膜的表面型態也隨著回火改變。除了改變了DB-PPV 與陰極金屬的有效接觸面積之外並導致載子注入效率與發光效率的提升。但是,當回火溫度高於120°C 時,DB-PPV 的本鏈及側鏈開始裂解,也因此導致元件的
衰退。此外,我們也證明出以DBPPV為主的高分子發光二極體的最佳回火溫度為120°C。
以啟始電壓(threshold voltage)與發光電壓(turn-on voltage)而言,前回火(pre-annealed)溫度在120°C元件為2.53與3.06伏特。以啟始電壓(threshold voltage)與發光電壓(turn-on voltage)而言,後回火(post-annealed)溫度在120°C元件為2.85與3.75伏特。而前回火與後回火溫度在120°C元件的發光效率分別為2.58與3.04cd/A。無疑地,以 DB-PPV為主要發光層的PLED元件在回火120°C以後,其元件特性大為改善。在我們對於不同回火溫度之研究下,以DB-PPV為主要發光層的PLED元件而言,最佳的回火溫度為120°C。
In this Dissertation, we had fabricated polymer light-emitting diode(PLED) based on 2,3-dibutoxy-1,4-poly(phenylene vinylene) (DB-PPV). At the beginning, we would find the best two key factors to fabricate PLED, one was concentration of polymer solution and the other was spin-rate for spin-coating polymer film. After the two factors were found from the performance of PLEDs, the effect of thermal treatment before or
after cathode deposition was studied. It was for the purpose of determining the best annealing temperature for DB-PPV based PLEDs. During this research, the double layer structure of polymer had been made. One polymer layer served as hole transferring layer (HTL) by using poly(3,4-ethylenedioxythiophene)–poly(4-styrene sulfonate) (PEDOT). Its thickness was 120nm. The other polymer DB-PPV served as light-emitting layer. The whole structure of PLED wasITO/PEDOT/DB-PPV/Ca/Al. Four different annealing temperatures, 90°C, 120°C, 150°C, and 180°C, had been proceeding on DB-PPV material and fabricated PLEDs device. From the result of FTIR, AFM and refractive index, the main chain and functional group could be moving freely and change the packing density of the DB-PPV polymer
because of thermal annealing. The packing density of the polymer film after being annealed at 120oC is higher than other studied samples annealed at different temperature. This may result not only in the change of surface morphology but also the barrier in the metal-organic interface. Therefore, the properties of PLED was greatly affected in the same time. The device annealed at 120°C has been demonstrated to have the best performance among all the studied sample. For sample pre-annealed at 120°C, the threshold voltage were 2.59V and the turn on voltage was 3.06V, respectively. The luminescent efficiencies was 2.58 cd/A. For
sample post-annealed at 120°C, the threshold voltage were 2.85V and the turn on voltage was 3.74V, respectively. The luminescent efficiencies
was 3.04 cd/A. It has shown that the characteristics of PLED were greatly improved after being annealed at 120°C.
Chapter 1
[1] A. Bernanose, M. Comte and P. Vouaux, J. Chim. Phys. 50, 64
(1953).
[2] A. Bernanose and P. Vouaux, J. Chim. Phys. 50, 261 (1953).
[3] E. Gurnee and R. Fernandez, US Patent 3 172 862, 1965.
[4] W. Digby and M. Schadt, US Patent 3 621 321, 1971.
[5] R. Partridge, US Patent 3 995 299, 1976.
[6] J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R.
Friend, P. Burn and A. B. Holmes, Nature 347, 539 (1990).
[7] R. Friend, J. Burroughes and D. Bradley, WO Patent 90/13 148,
1990. R. Friend, J. Burroughes and D. Bradley, US Patent 5 247 190,
1993.
[8] D. Braun and A. J. Heeger, Appl. Phys. Lett.,Vol. 58, p.1982, 1991.
[9] H. Radousky, A. Madden, K. Pakbaz, T. Hagler, H. Lee, H.
Lorenzana, G. Fox and P. Elliker, Int. SAMPE Tech. Conf. 27, 1143
(1995).
[10] J. Scott, J. Kaufman, P. Brock, R. DiPietro, J. Salem and J. Goitia, J.
Appl. Phys. 79, 2745 (1996).
[11] S. R. Forrest, Chem. Rev. 97, 1793 (1997).
[12] S. R. Forrest, P. E. Burrows and M. E. Thompson. Chem. Indus.,
1022 (1998).
[13] V. Bulovic, G. Gu, P. E. Burrows, M. E. Thompson, and S. R.
Forrest.. Nature (London) 380, 29 (1996).
Chapter 2
[1] R. N. Marks, , D. D. C. Bradley, R. W. Jackson, P. L. Burn and A. B.
Holmes, Synth. Met. 55, 4128 (1993).
[2] I. D. Paker, J. Appl. Phys. 75, 1656 (1994).
[3] J. Gmeiner, S. Karg, M. Meier, W. Riess, P. Strohriegl and M.
Schwoerer, Acta Polymer 44, 201 (1994).
[4] A. J. Campbell, D. D. C. Bradley and D. G. Litzey, J. Appl. Phys. 82,
6326 (1997).
[5] P. S. Davids, I. H. Campbell and D. L. Smith, J. Appl. Phys. 82, 6319
(1997).
[6] H. Vesweber, J. Pommerehne, R. Sander, R. F. Mahrt, A. Greiner, W.
Heitz and H. Bassler, Synth. Met. 68, 263 (1995).
[7] M. Logdlund and J. L. Bredas, J. Chem. Phys. 101, 4357 (1994).
[8] P. Dannetum, M. Fahlman, C. Fahlman, K. Kaerijama, Y. Sonoda, R.
Lazzaroni, J. L. Bredas and W. R. Salaneck, Synth. Met. 67, 133
(1994).
[9] Y. Cao, P. Smith and A. J. Heeger, Polymer 32, 1210 (1991).
[10] P. M. Borsenberger and D. S. Weiss. “Organic Photoreceptors for
Imaging Systems” (Marcel Dekker, New York) (1993).
[11] P.W. M. Blom, M. J. de Jong and J. J. M. Vleggaar, Appl. Phys. Lett.
68, 3308 (1993).
[12] P.W. M. Blom, M. J. de Jong and M. G van Munster, Phys. Rev. B
55, R656 (1997).
[13] A. J. Campbell, M. S. Weaver, D. G. Lidzey and D. D. C. Bradley, J.
Appl. Phys. 84, 6737 (1998).
[14] M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin and T.
M. Miller, Phys. Rev. Lett. 73, 744 (1994).
[15] M. Pope, H. P. Kaltmann and P. Magnante, J. Chem. Phys. 38, 2042
(1963).
[16] A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C.
Greenham, P. L. Burn, A. B. Holmes and A. Kraft, Appl. Phys. Lett.
61, 2793 (1992).
[17] S. M. Sze, Physics of Semiconductor Devices, 2nd Edition (1985),
John Wiley & Sons, Inc.
[18] V. N. Abakumov, V. I. Perel and I. N. Yassievich, in Nonradiative
Recombination in Semiconductors p.108, North-Holland, Amsterdam,
(1991).
[19] D. M. Pai, J. Chem. Phys. 52, 2285 (1970).
[20] H. Bassler, Phys. Status Solidi B 175, 15 (1993).
[21] Yu. N. Gartstein and E. M. Conwell, Chem. Phys. Lett. 245, 351
(1996).
[22] D. H. Dunlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett. 77,
542 (1996).
[23] H. Meyer, D. Haarrer, H. Naarmann, and H. H. Hohold, Phys. Rev.
B 52, 2587 (1995).
[24] G. Gustaffson, G. M. Treacy, Y. Cao, F. Klavertter, N. Colaneri and
A. J. Heeger, Synth. Met. 57, 4123 (1993).
[25] M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin and T.
M. Miller, Phys. Rev. Lett. 73, 744 (1994).
[26] F. Papadimitrakopoulos, K, Konstandinidis, T. M. Miller, R. Opila,
E. A Chandross and M. E. Galvin, Chem. Mater. 6, 1563 (1994).
Chapter 3
[1] C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D.
Alloway and N. R. Armstrong, Langmuir 18, 450 (2002).
[2] S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung and C. F. Kwong,
Appl. Phys. A 68, 447 (1999).
[3] T. P. Nguyena and S. A. deVos, Appl. Surf. Sci. 221,330 (2004).
[4] F. Cacialli, J. S. Kim, T. M. Brown, J. Morgado, M. Granstrom, R. H.
Friend, G. Gigli, R. Cingolani, L. Favaretto, G. Barbarella, R. Daik
and W. J. Feast, Synth. Met. 109, 7 (2000).
[5] T. OYAMADA, C. MAEDA, H. SASABE and C. ADACHI, Jpn. J.
Appl. Phys. 42, L1535 (2003).
[6] C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller and R.
Kiebooms, Synth. Met. 111-112, 603 (2000).
[7] M. Yan, L.J. Rothberg, F. Papadimitrakopoulos and M.E. Galvin,
Phys. Rev. Lett. 73, 744 (1994).
Chapter 4
[1] R. M. Silverstein and F. X. Webster, Spectrometric Identification of
Organic Compounds, Wiley, New York (1998) 6th ed.
[2] R. F. Cossiello, E. Kowalski, P. C. Rodrigues, L. Akcelrud, A. C.
Bloise, E. R. deAzevedo, T. J. Bonagamba and T. D. Z. Atvars,
Macromolecules 38, 925 (2005).
[3] B. B. Mandelbrot, The Fractal Geometry of Nature, (San Francisco: W.
H. Freeman 1982).
Chapter 5
[1] M. L. Tu, Y. K. Su, W. C. Lu, H. C. Lee and A. Yeh, EDMS
Conference, 122 (2005).
[2] T. Q. Nguyen, I. B. Martini, J. Liu and B. J. Schwartz; J. Phys. Chem.
B 104, 237 (2000).
[3] M. W. Wu and E. M. Conwell; Phys. Rev. B 56, R10060 (1997).
[4] Y. Gao and K. T. Park, J. Appl. Phys. 73, 7894 (1993).
[5] M. L. Tu, Y. K. Su, W. C. Lu, H. Yang, T. F. Kuo and T. C. Wen, Jpn.
J. Appl. Phy. 44, 7482 (2005).
[6] T. P. Nguyen, P. LeRendu , P. D. Long and S. A. DeVos, Surf. Coat.
Tech. 180, 646 (2004).
[7] M. L. Tu, Y. K. Su and W. C. Lu, accepted to Jpn. J. Appl. Phy. 45.
[8] Y. Shi, J. Liu and Y. Yang, J. Appl. Phys. 87, 4254 (2000).
[9] J. Liu, Y. Shi, L. Ma, and Y. Yang, J. Appl. Phys. 88, 605 (2000).
Chapter 6
[1] S. A. Carter, J. C. Scott and P. J. Brock, Appl. Phys. Lett. 71, 1145
(1997).
[2] P. W. M. Blom, H. F. M. Schoo, and M. Matters, Appl. Phys. Lett. 73,
3914 (1998).
[3] I.S. Millard, Synth. Met. 111-112, 119 (2000).