簡易檢索 / 詳目顯示

研究生: 黎昭男
Li, Chao-Nan
論文名稱: 飛輪儲能系統於整合離岸式風場與潮流場之動態穩定度改善研究
Dynamic Stability Improvement of an Integrated Offshore Wind Farm and Tidal-Current Farm Using a Flywheel Energy-Storage System
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 210
中文關鍵詞: 潮流場離岸式風場混合式再生能源飛輪儲能系統穩定度
外文關鍵詞: Tidal-current farm, offshore wind farm, hybrid renewable resources, flywheel energy-storage system (FESS), stability
相關次數: 點閱:114下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以水平軸潮流渦輪機驅動永磁發電機做為無壩體式潮流發電系統之架構,並以聚集等效之方式將之擴展成聚集等效潮流場,進一步分析聚集等效離岸式風場與潮流場經由傳輸線連接至市電併聯運轉,並比較該混合式再生能源系統含與不含飛輪儲能系統之穩態與動態模擬結果。本論文於三相平衡系統下利用交直軸等效電路模型,分別建立無壩體式潮流場、離岸式風場以及飛輪儲能系統等模型,並以共同交流匯流排之電壓做為回授訊號、利用極點安置法設計飛輪儲能系統之比例-積分-微分阻尼控制器。本論文於穩態特性方面,分析不同潮流流速、風速及傳輸線長度等情況下對系統特性之影響;在動態模擬方面,完成了長時間時變潮流流速變動、短時間時變風速變動、轉矩干擾以及市電端三相短路故障等模擬結果。經由穩態與動態結果得知,當所研究之系統加入飛輪儲能系統與阻尼控制器後,可有效地改善系統遭受干擾時之穩定度特性。

    This thesis employs a permanent-magnet generator driven by a horizontal-axis tidal-current turbine to constitute a tidal-current power generation system, and an equivalent aggregated tidal-current farm is established by using the equivalent aggregation method. Both steady-state and dynamic analyzed results of power flow and stability of the hybrid renewable resources including an equivalent aggregated offshore wind farm and a tidal-current farm with and without a flywheel energy-storage system (FESS) are presented. The q-d axis equivalent-circuit model is utilized to establish the models for the tidal-current farm, the offshore wind farm, and the FESS under three-phase balanced loading conditions. A proportional-integral-derivative (PID) type damping controller using the voltage magnitude of the common AC bus as a feedback signal is designed for the FESS by pole-assignment approach based on modal control theory. Steady-state characteristics of this studied system under different values of wind speed, tidal-current speed, length of transmission line, etc. are examined. Dynamic simulations of the studied system subject to long-term time-varying tidal-current speeds, short-term time-varying wind speeds, torque disturbances, and a three-phase fault are also carried out. It can be concluded from the simulation results that the proposed FESS joined with the designed PID damping controller can effectively control the power flow and improve the stability of the studied system under various disturbance conditions.

    中文摘要 I 英文摘要 II 致謝 IV 目錄 V 表目錄 IX 圖目錄 XII 符號說明 XVII 第一章 緒論 1 1-1研究背景 1 1-2研究動機 3 1-3相關文獻回顧 4 1-4本論文之貢獻 10 1-5 研究內容概述 11 第二章 系統數學模型 13 2-1 前言 13 2-2 風之數學模型 14 2-3 風渦輪機之數學模型 16 2-4 潮汐流速之數學模型 18 2-5 潮流渦輪機之數學模型 22 2-6 渦輪機與發電機間轉矩之數學模型 23 2-7 離岸式風場雙饋式感應發電機之數學模型 25 2-8 潮流場永磁式發電機之數學模型 31 2-9 飛輪儲能系統之數學模型 38 2-10 渦輪機葉片旋角控制器之數學模型 46 第三章 以極點安置法設計飛輪儲能系統之PID阻尼控制器 49 3-1 前言 49 3-2 控制系統之數學模型 49 3-3 以極點安置法設計PID阻尼控制器 51 3-4 靈敏度分析 56 第四章 市電併聯型聚集等效離岸式風場與潮流場結合飛輪儲能系統之穩態分析 61 4-1 前言 61 4-2 永磁式發電機運用於市電併聯型聚集等效潮流場之穩態分析62 4-2-1 潮流流速變動之穩態分析 62 4-2-2 市電電壓改變之系統穩態分析 69 4-2-3 連接至電網傳輸線長度改變之系統穩態分析 74 4-3 市電併聯型聚集等效風場與潮流場結合飛輪儲能系統之系統穩 態分析 80 4-3-1 風速及潮流流速變動之系統穩態分析 80 4-3-2 市電電壓變動之系統穩態分析 100 4-3-3 連接至電網傳輸線長度變動之系統穩態分析 114 第五章 市電併聯型聚集等效離岸式風場與潮流場之系統動態分析 128 5-1 前言 128 5-2 聚集等效潮流場單獨連接至市電,於不同干擾下之動態響應 129 5-2-1 潮流流速變動之動態分析 129 5-2-2 發電機遭受轉矩干擾之動態分析 132 5-2-3 連接至電網之傳輸線發生跳線之動態分析 134 5-2-4 市電端發生三相短路故障之動態分析 136 5-2-5 市電電壓發生電壓驟降之動態分析 138 5-3 離岸式風場發生風速變動時,系統之動態響應 140 5-3-1 系統含與不含飛輪儲能系統之動態響應比較 141 5-3-2 系統含與不含PID控制器之動態響應比較 147 5-4 於潮流場發生轉矩干擾時,系統之動態響應 152 5-4-1 系統含與不含飛輪儲能系統之動態響應比較 152 5-4-2 系統含與不含PID控制器之動態響應比較 157 5-5離岸式風場發生轉矩干擾時,系統之動態響應 162 5-5-1 系統含與不含飛輪儲能系統之動態響應比較 162 5-5-2 系統含與不含PID控制器之動態響應比較 167 5-6 本地負載變動時,系統之動態響應 172 5-6-1 系統含與不含飛輪儲能系統之動態響應比較 172 5-6-2 系統含與不含PID控制器之動態響應比較 177 5-7 低電壓持續運轉能力之系統響應 182 5-7-1 系統含與不含飛輪儲能系統之動態響應比較 183 5-7-2 系統含與不含PID控制器之動態響應比較 187 5-8 電網端發生三相短路故障時,系統之動態響應 191 5-8-1 系統含與不含飛輪儲能系統之動態響應比較 191 5-8-2 系統含與不含PID控制器之動態響應比較 196 第六章 結論與未來研究方向 201 6-1 結論 201 6-2 未來研究方向 204 參考文獻 206

    [1] 台灣電力公司網頁。http://www.taipower.com.tw/, retrieve date: January 15, 2010.
    [2] 風能,維基百科。http://zh.wikipedia.org/zh-tw/%E9%A2%A8%E8%83%BD, retrieve date: January 18, 2010.
    [3] 行政院經濟建設委員會網頁-全球風力發電持續成長,離岸式風力發電再創商機。http://www.cepd.gov.tw/m1.aspx?sNo=0013644, retrieve date: February 20, 2010.
    [4] 邱逢琛,海洋能科技中長程發展規劃先期研究報告,台灣海洋科技研究中心,民國九十八年十二月。
    [5] F. O. Rourke, F. Boyle, and A. Reynolds, “Tidal energy update 2009,” Applied Energy, vol. 87, no. 2, pp. 398-409, February 2010.
    [6] K. Yuen, K. Thomas, M. Grabbe, P. Deglaire, M. Bouquerel, D. Osterberg, and M. Leijon, “Matching a permanent magnet synchronous generator to a fixed pitch vertical axis turbine for marine current energy conversion,” IEEE Oceanic Engineering, vol. 34, no. 1, pp. 24-31, 2009.
    [7] Y. Jiang, F.-R. Meng, and Y.-H. Luo, “Variable speed constant frequency tidal current energy generation and control strategy for maximum power point tracking and grid connection,” in Proc. 2009 International Sustainable Power Generation and Supply Conference, Nanjing, China, pp. 1-6, April 6-7, 2009.
    [8] A. G. Bryans, B. Fox, P. A. Crossley, and M. O’Malley, “Impact of tidal generation on power system operation in Ireland,” IEEE Trans. Power Systems, vol. 20, no. 4, pp. 2034-2040, 2005.
    [9] M. J. Khan, G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe “Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review,” Applied Energy, vol. 86, no. 10, pp. 1823-1835, October 2009.
    [10] M. L. Rahman and Y. Shirai, “Hybrid offshore-wind and tidal turbine (HOTT) energy conversion I (6-pulse GTO rectifier and inverter),” in Proc. 2008 IEEE International Sustainable Energy Technologies, Singapore, pp. 650-655, November 24-27, 2008.
    [11] Y. Da and A. Khaligh, “Hybrid offshore wind and tidal turbine energy harvesting system with independently controlled rectifiers,” in Proc. 2009 IEEE Industrial Electronics Conference, Porto, Portugal, pp. 4577-4582, November 3-5, 2009.
    [12] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission and Distribution, vol. 1, no. 5, pp. 751-760, 2007.
    [13] S. E. B. Elghali, R. Balme, K. L. Saux, M. E. H. Benbouzid, J. F. Charpentier, and F. Hauville, “A simulation model for the evaluation of the electrical power potential harnessed by a marine current turbine,” IEEE Ocean Engineering, vol. 32, no. 4, pp. 786-797, 2007.
    [14] J. Khan, G. Bhuyan, A. Moshref, K. Morison, J. H. Pease, and J. Gurney, “Ocean wave and tidal conversion technologies and their interaction with electrical networks,” in Proc. 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, pp. 1-8, July 20-24, 2008.
    [15] L. Ye, J. L. Barbara, and M. C. Sander, “Modeling tidal turbine farm with vertical axis tidal current turbines,” in Proc. 2007 IEEE International Systems, Man and Cybernetics Conference, Montreal, Canada, pp. 697-702, October 7-10, 2007.
    [16] R. Bharanikumar, V. Kandasamy, M. P. Maheswari, and A. N. Kumar, “Steady state analysis of wind turbine driven PM generator with power converters,” in Proc. 2008 International Emerging Trends in Engineering and Technology Conference, Nagpur, Maharashtra, pp. 922-926, July 19-18, 2008.
    [17] H.-S. Ko, G.-G. Yoon, and W.-P. Hong, “Active use of DFIG-based variable-speed wind-turbine for voltage regulation at a remote location,” IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1916-1925, 2007.
    [18] K. Veszpremi and I. Schmidt, “Flywheel energy storage drive for wind turbines,” in Proc. 2007 International Power Electronics and Drive Systems Conference, Bangkok, pp. 916-923, November 27-30, 2007.
    [19] L. Zhou and Z.-P. Qi, “Modeling and control of a flywheel energy storage system for uninterruptible power supply,” in Proc. 2009 International Sustainable Power Generation and Supply Conference, Nanjing, China, pp. 1-6, April 6-7, 2009.
    [20] M. Molina, J. A. Suul, and T. Undeland, “Low voltage ride through of wind farms with cage generators: STATCOM versus SVC,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1104-1117, May 2008.
    [21] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1994.
    [22] C. M. Ong, Dynamic Simulation of Electric Machinery, Taiwan: Pearson Education, 2005.
    [23] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [24] 余俊穎,飛輪儲能系統於混合大型離岸式風場與海流場之功率潮流控制與穩定度分析研究,國立成功大學電機工程學系碩士論文,民國九十八年七月。
    [25] 鄭光哲,微渦輪機之特性分析,國立成功大學電機工程學系碩士論文,民國九十七年七月。
    [26] 劉建宏,海流發電系統之特性分析,國立成功大學電機工程學系碩士論文,民國九十七年七月。
    [27] 盧志榮,飛輪儲能系統於風力發電系統之功率潮流控制及穩定度分析研究國立成功大學電機工程學系碩士論文,民國九十七年六月。
    [28] 陳翔雄,利用超導儲能系統於大型離岸式風場之動態穩定度改善研究,國立成功大學電機工程學系博士論文,民國九十八年三月。
    [29] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,民國九十五年六月。
    [30] 中華民國台灣電力股份有限公司再生能源發電系統併聯技術要點,民國九十八年十二月三十一日。

    下載圖示 校內:2015-08-27公開
    校外:2020-01-01公開
    QR CODE