| 研究生: |
林明毅 Lin, Ming-Yi |
|---|---|
| 論文名稱: |
運用萃智理論改善回收晶圓載具製程良率 Applying TRIZ Theory to Improve Recycling Wafer Carrier Process Yield |
| 指導教授: |
邵揮洲
Shaw, Heiu-Jou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 萃智理論 、回收晶圓載具 、矛盾矩陣 |
| 外文關鍵詞: | TRIZ, recycling wafer carrier, Contradiction Matrix |
| 相關次數: | 點閱:102 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶圓載具用於晶圓加工製程中及工廠之間晶圓的儲存與運輸,降低晶圓受到外部碰撞和損傷等風險,亦避免運輸過程中的汙染,提供晶圓安全有效的防護。隨著半導體技術的不斷進步,對於晶圓載具的要求也持續提高。其中,晶圓載具在使用後可透過清洗製程回收使用,而高潔淨度要求是製程良率中一大要點,如何達到相對應的要求,成為了製程優化中的重點。
回收晶圓載具經清洗製程後的成品仍常因為微塵或碰刮傷問題,導致重工或客訴發生,本研究運用萃智理論之創新問題解模式,針對回收晶圓載具的製程上進行問題改善。以特性要因法針對現況回收晶圓載具製程進行分析,找尋影響製程良率關鍵因素,運用萃智理論之39項工程參數轉換並建立矛盾矩陣,對應40項發明原則取得啟發性的解決方案,評估方案可行性,找尋最佳解法,用以提升製程良率。
經研究發現,透過清洗製程前使用靜電風扇進行初步清潔,調整人員作業手法與流程,並調整清洗機台參數,可有效解決成品潔淨度超出規範問題,改善回收載具製程良率,出貨前成品檢驗良率從88.40%提高至93.94%,增加了產品的穩定性,降低重工頻率,提升產品品質。
Wafer carrier is used for storing and transporting wafers between semiconductor manufacturing processes and facilities, reducing the risk of external collisions and damage to the wafers, as well as preventing contamination during transport, providing safe and effective protection for wafers. As semiconductor technology continues to advance, the demands for wafer carriers also continue to increase. In particular, the ability to recycle wafer carriers through a cleaning process after use is a major focus, and achieving high levels of cleanliness is a key factor in process yield. How to meet these requirements has become a focal point in process optimization.
The recycled wafer carriers, even after undergoing the cleaning process, often face issues with dust particles or scratches, leading to rework or customer complaints. This study employs the innovative problem-solving pattern of TRIZ theory, focusing on process improvement for recycled wafer carriers. By applying the fishbone diagram method to analyze the current process of recycled wafer carriers, key factors affecting the process yield are identified. Utilizing the 39 engineering parameter transformations of TRIZ theory and establishing a contradiction matrix, inspirational solutions are derived from 40 inventive principles. The feasibility of these solutions is assessed to find the optimum resolution aimed at enhancing the process yield.
The research reveals that preliminary cleaning using electrostatic fans before the cleaning process, adjusting personnel techniques and processes, and tuning cleaning machine parameters can effectively resolve the issue of excessive cleanliness in the finished product. This increases product stability and reliability, reduces rework frequencies, improves yield rate from 88.40% to 93.94% in the wafer carrier recycling process, and enhances product quality.
[1] 陳延方(2018)。半導體產業之循環經濟應用-以晶圓載具回收再利用為例,國立清華大學高階經營管理碩士在職專班碩士論文。
[2] 劉晉亨(2022)。晶圓盒供應商之績效評估,中華大學工業管理學系論文。
[3] J. Frickinger, J. Bugler, G. Zielonka, H. Ryssel, M. Hans Dudenhausen, M. Fritzsche, M. Shopbell (2001), "FOUP cleaning - FOSB transportation: a challenge for manufacturing on 300 mm wafers", 2001 IEEE International Symposium on Semiconductor Manufacturing, pp.491-494.
[4] Entegris官網。Front Opening Shipping Boxe (FOSB)。取自https://www.entegris.com/shop/en/USD/products/wafer-handling/wafer-shipping/300-mm-wafer-shippers/SB300-Full-Pitch-Front-Opening-Shipping-Boxes-%28FOSBs%29/p/SB300FullPitchFrontOpeningShippingBoxesFOSBs。最後瀏覽日:2023年9月20日
[5] 黃郁云(2021)。探討循環經濟之下的價值共創-以光洋應材為例,國立成功大學企業管理研究所碩士在職專班碩士論文。
[6] 沈禹成(2019)。以TRIZ理論建構循環經濟的商業模式與產品創新設計方法,國立成功大學機械工程學系碩士論文。
[7] Ishikawa, K.(1989), “Introduction to Quality Control.”, Chapman and Hall, London.
[8] 經濟部智慧財產局,107.08 智慧財產權月刊 Vol.236,技術性專利布局:專利探勘與TRIZ+理論。https://pcm.tipo.gov.tw/PCM2010/PCM/ebook/
book/236/26/index.html。最後瀏覽日:2023年9月1日
[9] 宋明弘(2017)。TRIZ輕鬆學(二版)。鼎茂圖書出版股份有限公司,台北市。
[10] 宋明弘(2009)。TRIZ萃智:系統性創新理論與應用。鼎茂圖書出版股份有限公司,台北市。
[11] 東洋技術股份有限公司(2016)。FOUP清洗機。取自 https://www.toyo-adtec.com.tw/portfolio-item/foup%E6%B8%85%E6%B4%97%E6%A9%9F/。最後瀏覽日:2023年10月04日。
[12] 華湧科技有限公司(2020)。無塵室應用。取自https://www.hytech.com.tw/support1/。最後瀏覽日:2023年10月04日。
[13] 戴勇平(2020)。晶圓載具清洗流程優化與監控系統之建置,明新科技大學管理研究所碩士在職專班碩士論文。
[14] KEYENCE官網(2022)。靜電消除器的除靜電原理。
取自https://www.keyence.com.tw/ss/products/static/static-electricity/step/ionizer.jsp。最後瀏覽日:2023年9月20日。
[15] KUKA(2019)。KUKA develops mobile robot for semiconductor production。取自 https://www.kuka.com/ende/company/press/news/2019/02/
semiconductor-production。最後瀏覽日:2023年10月04日。
[16] 吳政鋼(2013)。潔淨室的氣態微分子汙染物防治策略探討,國立成功大學工學院工程管理碩士在職專班碩士論文。
[17] 濾能股份有限公司(2022)。堆疊式濾網。取自 https://greenfiltec.com/%E6%A8%A1%E7%B5%84%E5%8C%96%E5%A0%86%E7%96%8A%E5%BC%8F%E5%8C%96%E5%AD%B8%E6%BF%BE%E7%B6%B2/。最後瀏覽日:2023年10月04日。
[18] Donnici, G., Frizziero, L., Francia, D., Liverani, A., & Caligiana, G. (2018), TRIZ method for innovation applied to an hoverboard, Cogent Engineering, 5(1), 1524537.
[19] Motoya Okazaki, Sharon Niehoff, Ninos Alkurjy, Cathy Cai, Chris Ngai, Petra Richtsteiger, Julien Bounouar (2010), "VOC induced particle generation during wafer transportation and its solution", 2010 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC), pp. 196-199.
[20] B.H.J. Tseng, M.D. You, S.C. Hsin(2005), "Characterization and control of microcontamination for advanced technology nodes and 300-mm wafer processing: overview and challenges", IEEE Transactions on Device and Materials Reliability, pp.623-630.