簡易檢索 / 詳目顯示

研究生: 張泰維
Chang, Tai-Wai
論文名稱: 不同特徵分析法和不同紊態數據分析法在圓柱紊態近尾流區之比較應用
Comparison between Different Decomposition Methods in Near-wake Turbulent Area behind Circular Cylinders
指導教授: 張克勤
Chang, Keh-Chin
共同指導教授: 葉思沂
Yeh, Szu-I
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 118
中文關鍵詞: 動力特徵分解法正交特徵分解法粒子影像測速法Period - averaged processing法
外文關鍵詞: Dynamic mode decomposition, Proper orthogonal decomposition, Particle image velocimetry, Period-averaged processing
相關次數: 點閱:107下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中利用粒子影像測速儀 ( Particle Image Velocimetry ) 於圓柱和方柱之條件下之量測速度的結果,探討動力特徵分析 ( Dynamic Mode Decomposition, DMD )、正交特徵分解 ( Proper Orthogonal Decomposition, POD ) 和Period - averaged processing的方法於近尾流區之紊態數據之應用。

    動力特徵分析利於分辨出變化率高之流場特徵,在圓柱流場和方柱流場的條件之下,與正交特徵分解互相對照,可清楚分析出約在30 Hz至50 Hz之Secondary vortex頻率。應用動力特徵分析的高敏感性,只使用0.05秒的粒子影像張數,便可得具有意義之分析結果;但使用過多的資料量進行動力特徵分析,亦可能使分析的結果失真。使用Period - averaged processing處理方法移除圓柱流場中的類週期頻率 ( quasi - periodic motion ) 和實驗系統雜訊後,可獲得與動力特徵分析所得的相同Secondary vortex頻率。使用正交特徵分解法分析Period - averaged processing處理後的紊態數據和使用在流場不同位置的數據進行統計平均,亦可清楚得知Secondary vortex的存在及其產生之頻率。

    The description of coherent features of fluid flow is essential for understanding fluid-dynamical and transport processes. With the help of particle image velocimetry (PIV), the velocity profiles of the circular cylinder flow field and the square cylinder flow field can be obtained. Dynamic mode decomposition (DMD), proper orthogonal decomposition (POD), and period-averaged processing (PAP) are then introduced to turbulence to extract dynamic information from different kinds of flow fields. The results of dynamic mode decomposition clearly show the features of the Kármán vortex street in the circular cylinder and the square cylinder flow fields. The DMD analysis clearly shows that there are secondary vortex signals between 30 Hz to 50 Hz. Due to high sensitivity, DMD could analyze data only in 0.5 seconds to acquire valid results. On the other hand, DMD will be intoxicated if we import an inappropriate amount of data. In addition, the period-averaged processing method is applied to filter quasi-periodic motion and obtain secondary organized motion in the circular cylinder flow. Furthermore, to understand the secondary vortex and its features, POD is also applied to analyze PAP data.

    第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 5 1 - 2 - 1 動力特徵分析 ( dynamic mode decomposition , DMD ) 5 1 - 2 - 2 正交特徵分解 ( Proper Orthogonal decomposition , POD ) 7 1 - 2 - 3 Turbulent Data Decomposition Methods 8 1 - 2 - 4 Exact Coherent States 9 1 - 2 - 5 粒子影像測速法 ( Particle Image Velocimetry , PIV ) 12 第二章 分析方法 28 2 - 1 Dynamic mode decomposition 分析法 28 2 - 2 Dynamic mode decomposition的挑戰與目標 31 2 - 3 Proper orthogonal decomposition 分析法 32 2 - 4 Period - averaged Processing ( PAP ) 算則 33 2 - 5 Generate DMD power spectrum in FFT 37 第三章 實驗方法 39 3 - 1 圓柱後尾流場風洞 39 3 - 2 圓柱測試模型 41 3 - 3方柱後尾流場風洞 41 3 - 4方柱後尾流場測試模型 42 3 - 5 粒子影像測速系統 42 3 - 5 - 1 粉體與進料裝置 42 3 - 5 - 2 鏡頭與雷射 43 3 - 5 - 3 高速攝影機 43 3 - 5 - 4 CMOS感光原理 43 3 - 5 - 5 計算軟體 44 第四章 DMD法實驗結果與討論 46 4 - 1 圓柱後尾流場DMD Mode下使之FFT頻譜分析與討論 47 4 - 2 圓柱後尾流場之DMD與輸入資料數的變化 50 4 - 2 - 1 0.5 D – 5.5 D ( Re = 3570 ) 圓柱後尾流場為例 50 4 - 2 - 2 5.5 D – 10.5 D ( Re = 3570 ) 圓柱後尾流場為例 51 4 - 2 - 3 0.5 D – 5.5 D ( Re = 9210 ) 圓柱後尾流場為例 51 4 - 2 - 4 5.5 D – 10.5 D ( Re = 9210 ) 圓柱後尾流場為例 52 4 - 3 圓柱後尾流流場在POD與DMD的Mode比較 52 4 - 4 方柱後尾流場DMD Mode下使之FFT頻譜分析與討論 53 4 - 5 方柱後尾流場之DMD與輸入資料數的變化 55 4 - 6 DMD法的過度預測 ( over prediction ) 55 4 - 7 DMD和POD計算法小結 57 第五章 PAP法處理結果與討論 58 5 - 1 Period - averaged Processing在圓柱後尾流場之下的表現 58 5 - 1 - 1 Re = 3570圓柱流場PAP表現 58 5 - 2 Period - averaged processing對相干性結構之影響 60 第六章 結論與未來研究建議 64 參考文獻 66 附錄 71

    1. Hussain, A.F., Coherent structures and turbulence. Journal of Fluid Mechanics, 1986. 173: p. 303-356.
    2. Kourta, A., et al., Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder. Journal of Fluid Mechanics, 1987. 181: p. 141-161.
    3. Roshko, A., Perspectives on bluff body aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics, 1993. 49(1-3): p. 79-100.
    4. Thais, L. and J. Magnaudet, A triple decomposition of the fluctuating motion below laboratory wind water waves. Journal of Geophysical Research: Oceans, 1995. 100(C1): p. 741-755.
    5. Hussain, A.K.M.F. and W.C. Reynolds, The mechanics of an organized wave in turbulent shear flow. Journal of Fluid Mechanics, 1970. 41(2): p. 241-258.
    6. Loeve, M., Probability theory: foundations, random sequences. 1955.
    7. Sirovich, L., Turbulence and the dynamics of coherent structures. I. Coherent structures. Quarterly of applied mathematics, 1987. 45(3): p. 561-571.
    8. Schmid, P.J., K.E. Meyer, and O. Pust. Dynamic mode decomposition and proper orthogonal decomposition of flow in a lid-driven cylindrical cavity. in 8th International Symposium on Particle Image Velocimetry. 2009.
    9. Schmid, P.J., D. Violato, and F. Scarano, Decomposition of time-resolved tomographic PIV. Experiments in Fluids, 2012. 52(6): p. 1567-1579.
    10. Chen, W.-C. and K.-C. Chang, PIV measurements in near-wake turbulent regions. Modern Physics Letters B, 2018. 32(12n13): p. 1840026.
    11. Williamson, C.H., Vortex dynamics in the cylinder wake. Annual review of fluid mechanics, 1996. 28(1): p. 477-539.
    12. Taira, K., M.S. Hemati, and L.S. Ukeiley, Modal Analysis of Fluid Flow: Introduction to the Virtual Collection. 2020, American Institute of Aeronautics and Astronautics.
    13. Berkooz, G., P.J. Holmes, and J. Lumley, The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows. Annual Review of Fluid Mechanics, 2003. 25: p. 539-575.
    14. Bi, W., et al., Time-resolved proper orthogonal decomposition of the near-field flow of a round jet measured by dynamic particle image velocimetry. Measurement Science and Technology, 2003. 14(8): p. L1.
    15. Li, C.-T., K.-C. Chang, and M.-R. Wang, PIV measurements of turbulent flow in planar mixing layer. Experimental Thermal and Fluid Science, 2009. 33(3): p. 527-537.
    16. Schmid, P.J., Dynamic mode decomposition of numerical and experimental data. Journal of fluid mechanics, 2010. 656: p. 5-28.
    17. Arányi, P., et al., Analysis of different POD methods for PIV-measurements in complex unsteady flows. International Journal of Heat and Fluid Flow, 2013. 43: p. 204-211.
    18. Sakai, M., et al., Experimental and numerical studies on flow behind a circular cylinder based on POD and DMD. Transactions of the Japan Society for Aeronautical and Space Sciences, 2015. 58(2): p. 100-107.
    19. Shih, C.-L., et al. Velocity Measurements of Turbulent Wake Flow Over a Circular Cylinder. in International Journal of Modern Physics: Conference Series. 2016. World Scientific.
    20. Butcher, D. and A. Spencer, Cross-Correlation of POD Spatial Modes for the Separation of Stochastic Turbulence and Coherent Structures. Fluids, 2019. 4: p. 134.
    21. Rowley, C.W., et al., Spectral analysis of nonlinear flows. Journal of fluid mechanics, 2009. 641(1): p. 115-127.
    22. Schmid, P.J., Application of the dynamic mode decomposition to experimental data. Experiments in fluids, 2011. 50(4): p. 1123-1130.
    23. Sengupta, T.K., N. Singh, and V. Suman, Dynamical system approach to instability of flow past a circular cylinder. Journal of Fluid Mechanics, 2010. 656: p. 82.
    24. Wei, T. and C. Smith, Secondary vortices in the wake of circular cylinders. Journal of Fluid Mechanics, 1986. 169: p. 513-533.
    25. Golub, G.H. and C. Greif, An Arnoldi-type algorithm for computing page rank. BIT Numerical Mathematics, 2006. 46(4): p. 759-771.
    26. Mezić, I., Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics, 2005. 41(1-3): p. 309-325.
    27. Mezić, I., Analysis of fluid flows via spectral properties of the Koopman operator. Annual Review of Fluid Mechanics, 2013. 45: p. 357-378.
    28. Tu, J.H., et al., On dynamic mode decomposition: Theory and applications. arXiv preprint arXiv:1312.0041, 2013.
    29. Proctor, J.L., S.L. Brunton, and J.N. Kutz, Dynamic mode decomposition with control. SIAM Journal on Applied Dynamical Systems, 2016. 15(1): p. 142-161.
    30. Taira, K., et al., Modal analysis of fluid flows: An overview. Aiaa Journal, 2017. 55(12): p. 4013-4041.
    31. Kim, T., Frequency-Domain Karhunen-Loeve Method and Its Application to Linear Dynamic Systems. AIAA Journal, 1998. 36(11): p. 2117-2123.
    32. Adrian, R., K. Christensen, and Z.-C. Liu, Analysis and interpretation of instantaneous turbulent velocity fields. Experiments in fluids, 2000. 29(3): p. 275-290.
    33. Chen, K.K., J.H. Tu, and C.W. Rowley, Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. Journal of nonlinear science, 2012. 22(6): p. 887-915.
    34. Towne, A., O.T. Schmidt, and T. Colonius, Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. arXiv preprint arXiv:1708.04393, 2017.
    35. Westerweel, J., Fundamentals of digital particle image velocimetry. Measurement science and technology, 1997. 8(12): p. 1379.
    36. Candès, E.J., et al., Robust principal component analysis? Journal of the ACM (JACM), 2011. 58(3): p. 1-37.
    37. Arndt, R.E., D. Long, and M. Glauser, The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. 1997.
    38. Herzog, S., The large scale structure in the near-wall region of turbulent pipe flow. 1986.
    39. Holmes, P.J., et al., Low-dimensional models of coherent structures in turbulence. Physics Reports, 1997. 287(4): p. 337-384.
    40. Moin, P. and R.D. Moser, Characteristic-eddy decomposition of turbulence in a channel. Journal of Fluid Mechanics, 1989. 200: p. 471-509.
    41. Rowley, C.W. and J.E. Marsden, Reconstruction equations and the Karhunen–Loève expansion for systems with symmetry. Physica D: Nonlinear Phenomena, 2000. 142(1-2): p. 1-19.
    42. Perrin, R., et al., Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Experiments in Fluids, 2007. 43(2): p. 341-355.
    43. Felder, S. and H. Chanson, Triple decomposition technique in air–water flows: application to instationary flows on a stepped spillway. International Journal of Multiphase Flow, 2014. 58: p. 139-153.
    44. Reynolds, W. and A. Hussain, The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. Journal of Fluid Mechanics, 1972. 54(2): p. 263-288.
    45. Raffel, M., et al., Introduction, in Particle Image Velocimetry: A Practical Guide, M. Raffel, et al., Editors. 2018, Springer International Publishing: Cham. p. 1-32.
    46. Raffel, M., et al., Physical and Technical Background, in Particle Image Velocimetry: A Practical Guide, M. Raffel, et al., Editors. 2018, Springer International Publishing: Cham. p. 33-111.
    47. Adrian, L., R.J. Adrian, and J. Westerweel, Particle image velocimetry. 2011: Cambridge university press.
    48. Scarano, F. and M.L. Riethmuller, Iterative multigrid approach in PIV image processing with discrete window offset. Experiments in Fluids, 1999. 26(6): p. 513-523.
    49. Scarano, F., Iterative image deformation methods in PIV. Measurement science and technology, 2001. 13(1): p. R1.
    50. 陳威呈, 發展以PIV量測兩相流場之速度分佈技術, in 航空太空工程學系. 2018, 國立成功大學: 台南市. p. 142.
    51. Gavish, M. and D.L. Donoho, The Optimal Hard Threshold for Singular Values is $4/sqrt {3}$. IEEE Transactions on Information Theory, 2014. 60(8): p. 5040-5053.
    52. Rudin, W., Principles of Mathematical Analysis. 1976: McGraw-Hill.
    53. Jovanović, M.R., P.J. Schmid, and J.W. Nichols, Sparsity-promoting dynamic mode decomposition. Physics of Fluids, 2014. 26(2): p. 024103.
    54. Chou, C.-C., 太陽能熱水器模型氣動力特性分析研究. 成功大學航空太空工程學系學位論文, 2013: p. 1-103.
    55. 蔡嘉洋, 用於區塊化影像處理系統之局部掃描式影像感測晶片設計, in 電機學院電機產業專班. 2009, 國立交通大學: 新竹市. p. 56.
    56. Cicolin, M.M., et al., The role of separation on the forces acting on a circular cylinder with a control rod. Journal of Fluid Mechanics, 2021. 915: p. A33.
    57. Okajima, A., Strouhal numbers of rectangular cylinders. Journal of Fluid Mechanics, 1982. 123: p. 379-398.
    58. Zhang, Q., Y. Liu, and S. Wang, The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition. Journal of Fluids and Structures, 2014. 49: p. 53-72.
    59. 朱家駿, 相干性結構在紊流尾流的演進, in 航空太空工程學系. 2020, 國立成功大學: 台南市. p. 107.
    60. Raffel, M., et al., Particle image velocimetry: a practical guide. 2018: Springer.
    61. Yoon, D.-H., K.-S. Yang, and C.-B. Choi, Flow past a square cylinder with an angle of incidence. Physics of Fluids, 2010. 22(4): p. 043603.
    62. Stewartson, K. and P.G. Williams, Self-induced separation. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1969. 312(1509): p. 181-206.
    63. Kutz, J.N., et al., Dynamic mode decomposition: data-driven modeling of complex systems. 2016: SIAM.
    64. Wynn, A., et al., Optimal mode decomposition for unsteady flows. Journal of Fluid Mechanics, 2013. 733: p. 473-503.
    65. Goulart, P.J., A. Wynn, and D. Pearson. Optimal mode decomposition for high dimensional systems. in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC). 2012. IEEE.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE