| 研究生: |
陳彥宇 Chen, Yen-Yu |
|---|---|
| 論文名稱: |
具抑制直流電壓應力功能之連續導通模式充電幫浦功因修正電子安定器 Continuous-Conduction-Mode Charge-Pump Power-Factor-Correction Electronic Ballasts with DC-Bus Voltage-Stress Reduction Function |
| 指導教授: |
林瑞禮
Lin, Ray-Lee 李祖聖 Li, Tzuu-Hseng S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 連續導通模式 、充電幫浦 、功率因數修正 、電子安定器 、電壓應力 、帶拒濾波器 |
| 外文關鍵詞: | continuous-conduction-mode, charge-pump, power-factor-correction, electronic ballast, DC-bus, voltage stress, notch filter |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出具抑制直流電壓應力功能之連續導通模式充電幫浦功因修正電子安定器。所研製之電子安定器,係採用充電幫浦功率因數修正技術,俾以符合功率因數規範。然而,當充電幫浦功因修正電子安定器操作於預熱或點燈模式下,直流端電壓會上昇且遠高於穩態操作下之額定值,增加功率元件及直流電容器之電壓應力。因此,藉由並聯一電容於功因修正電感上,構成一帶拒濾波器(notch filter)於電子安定器操作在預熱或點燈模式時,增加輸入阻抗以降低安定器之直流電壓應力。此外,針對本論文所提出之連續導通模式充電幫浦功因修正電子安定器,提出其之設計準則,達到高功因且抑制直流電壓應力之效果。
最後,分別實做54W之電壓源及電流源連續導通模式充電幫浦功因修正的T5螢光燈電子安定器雛型電路,俾以驗證功率因數修正效果及抑制直流電壓應力的功能。
This thesis presents the continuous-conduction-mode charge-pump power-factor-correction (CCM CP-PFC) electronic ballasts with DC-bus voltage-stress reduction function. The CP-PFC techniques are widely applied to the electronic ballasts in order to achieve high power factor. However, the DC-bus voltage at preheat or ignition mode is higher than that at steady-state operation, which causes high voltage stresses on the active and passive components. Therefore, the input notch filter for the CCM CP-PFC electronic ballasts is proposed in order to reduce the DC-bus voltage stress at preheat and ignition modes. Furthermore, to achieve high power factor functionality, the design guidelines for the CCM voltage-source (VS) and current-source (CS) CP-PFC electronic ballasts are presented.
Finally, two prototype circuits of the CCM VS and CS CP-PFC electronic ballasts for one T5-54W fluorescent lamp are built to verify the performance of the PFC and the voltage-stress reduction capability of the DC-bus.
[1] E. E. Hammer and T. K. McGowan, “Characteristics of Various F40 Fluorescent Systems at 60 Hz and High Frequency,” IEEE Trans. Ind. Appl., vol. IA-21, pp. 11-16, Jan. 1985.
[2] M. K. Kazimierczuk and W. Szaraniec, “Electronic Ballast for Fluorescent Lamps,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 386-395, Oct. 1993.
[3] Y. S. Youn and G. H. Cho, “Regenerative Signal Amplifying Gate Driver of Self-Excited Electronic Ballast for High Pressure Sodium (HPS) Lamp,” in Proc. IEEE Power Electron. Spec. Conf., 1996, vol. 2, pp. 993-998.
[4] C. K. Cheong, K. W. E. Cheng, and H. L. Chan, “Examination of T8-T5 Electronic Ballast Adaptor,” in Proc. IEEE Power Electron. Systems and Appl., 2006, pp. 170-172.
[5] F. T. Wakabayashi, M. A. G. de Brito, C. S. Ferreira, and C. A. Canesin, “Setting The Preheating and Steady-State Operation of Electronic Ballasts, Considering Electrodes of Hot-Cathode Fluorescent Lamps” IEEE Trans. Power Electron., vol. 22, no.3, pp.899-911, May 2007.
[6] G. C. Blanco, M. Alonso, E. Lopez, A. Calleja, and M. Rico, “A Single Stage Fluorescent Lamp Ballast with High Power Factor,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., 1996, vol. 2, pp. 616-621.
[7] R. O. Brioschi, M. M. Lamego, and J. L. F Vieria, “A Low Cost High Power Factor Electronic Ballast,” in Proc. IEEE Ind. Appl. Conf., 1997, vol. 3, pp. 2360-2365.
[8] R. O. Brioshi and J. L. F. Vieira, “High-Power-Factor Electronic Ballast with Constant DC-Link Voltage,” IEEE Trans. Power Electron., vol. 13, pp. 1030-1037, Nov. 1998.
[9] J. L. F. Vieira, M. A. Co, and L. D. Zorzal, “High-Power-Factor Electronic Ballast Based on A Single Power Processing Stage,” IEEE Trans. Ind. Appl., vol. 47, pp. 809-820, Aug. 2000.
[10] J. H. Youm, H. L. Do, and B. H. Kwon, “A Single-Stage Electronic Ballast with High Power Factor,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 716-718, June 2000.
[11] M. Bruamatti, C. Z. Resende, M. A. Co, D. S. L. Simonetti, and J. L. F. Vieira, “Single Stage Self-Oscillating HPF Electronic Ballast,” in Proc. IEEE-IAS Annu. Meeting 37th, Oct. 2002, vol. 2, pp. 1052-1058.
[12] John C. W. Lam and P. K. Jain, “A Dimmable Electronic Ballast with Unity Power Factor Based on A Single-Stage Current-Fed Resonant Inverter,” IEEE Trans. Power Electron., vol. 23, no.6, pp. 3103-3115, Nov 2008.
[13] Y. C. Chuang, C. S. Moo, H. W. Chen, and T. F. Lin, “A Novel Single-Stage High-Power-Factor Electronic Ballast with Boost Topology for Multiple Fluorescent Lamps, “ IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 323-331, Jan./Feb. 2009.
[14] J. Qian, Advanced Single-Stage Power Factor Correction Techniques, Ph.D. dissertation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA, Sept. 1997.
[15] R. L. Lin, H. Y. Liu, and H. M. Shih, “AC-Side CCM CS-CP-PFC Electronic Ballast,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 789-796, May 2007.
[16] M. Maehara, “Inverter Device for Stable, High Power Factor Input Current Supply,” U.S. Patent, no. 5,274,540, Dec. 28, 1993.
[17] W. Chen, F. C. Lee, and T. Yamauchi, “An Improved Charge Pump Electronic Ballast with Low THD and Low Crest Factor,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., 1996, vol. 2, pp. 626-627.
[18] W. Chen, F. C. Lee, and T. Yamauchi, “Reduction of Voltage Stress in Charge Pump Electronic Ballast,” in Proc. IEEE Power Electron. Spec. Conf., 1996, vol. 1, pp. 887-893.
[19] J. Qian, F. C. Lee, and T. Yamauchi, “Current-Source Charge-Pump Power-Factor-Correction Electronic Ballast,” IEEE Trans. Power Electron., vol. 13, no. 3, pp. 564-572, May 1998.
[20] J. Qian, F. C. Lee, and T. Yamauchi, “Charge Pump Power-Factor-Correction Dimming Electronic Ballast,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 461-468, May 1999.
[21] F. Tao, J. Qian, F. C. Lee, and N. Onishi, “A Comparative Study of A Family of Charge Pump Power Factor Correction Electronic Ballasts,” in Proc. Appl. Power Electron. Conf. and Expo., 1999, vol. 2, pp. 739-745.
[22] J. Qian and F. C. Lee, ”Charge Pump Power-Factor-Correction Technologies. II. Ballast Applications,” IEEE Trans. Power Electron., vol.15, no.1, pp.130-139, Jan. 2000.
[23] F. Tao, Advanced High-Frequency Electronic Ballasting Techniques for Gas Discharge Lamps, Ph.D. dissertation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA, Dec. 2001.
[24] W. Wang, G. Liu, and D. Xu, “Electronic Ballast for High Pressure Sodium Lamp Based on Charge Pump Power Factor Correction Technique,” in Proc. IEEE IECON 31nd, Nov. 2005, pp. 826-830.
[25] J. Qian, F. C. Lee, and T. Yamauchi, “A New Continuous Input Current Charge Pump Power Factor Correction (CIC-CPPFC) Electronic Ballast,” in Proc. IEEE-IAS Annu. Meeting 32th, 1997, vol. 3, pp. 2299-2306.
[26] J. Qian, F. C. Lee, and T. Yamauchi, “New Continuous-Input Current Charge Pump Power-Factor-Correction Electronic Ballast,” IEEE Trans. Ind. Appl., vol. 35, no. 2, pp.433-441, Mar./Apr. 1999.
[27] S. Hassanpour, F. Farzaneh-fard, and A. Faroukh-payam, “Single-Switch Unity Power Factor Electronic Ballast with Continuous Input Current,” in Proc. IEEE Int. Conf. Elec. Machine and System, 2005, vol.2, pp. 1209-1213.
[28] H. Y. Liu, AC-side CCM Charge-Pump Power-Factor-Correction Electronic Ballasts, MS Thesis, National Cheng Kung University, June 2005.
[29] R. L. Lin and H. M. Shih, “A Family of Piezoelectric Transformer-Based Bridgeless Continuous-Conduction-Mode Charge-Pump Power-Factor Correction Electronic Ballasts,” in Proc. IEEE-IAS Annu. Meeting 42th, 2007, pp. 812-818.
[30] Y. Ji and R. Davis, “Starting Performance of High-Frequency Electronic Ballasts for Four-Foot Fluorescent Lamps,” IEEE Trans. Ind. Appl., vol. 33, no. 1, pp. 234-238, Jan./Feb. 1997.
[31] A. S. dos Santos, M. Toss, F. S. D. Reis, and R. Tonkoski “The Influence of Programmed Start Ballast in T5 Fluorescent Lamp Lifetime,” in Proc. IEEE IECON 31nd, Nov. 2005, pp. 831-836.
[32] C. S. Moo, W. M. Chen, and H. C. Yen, “A Series-Resonant Electronic Ballast for Rapid-Start Fluorescent Lamps with Programmable Starting,” in Proc. IEEE Power Conversion Conf., Apr. 2002, vol. 1, pp. 95-99.
[33] C. S. Moo, K. H. Lee, and H. C. Yen, “Profiling Starting Transient of Fluorescent Lamp with High-Frequency Electronic Ballast,” IEEE Trans. Plasma Science, vol. 37, no. 12, pp. 2353-2358, Dec. 2009.
[34] C. Y. Lin, Design and Analysis of Piezoelectric Transformer Converters, Ph.D. dissertation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA, July 1997.
[35] American National Standard for Ballasts for Fluorescent Lamps: Specifications, ANSI C82.1-1985, 1985.
[36] High-Frequency Fluorescent Lamp Ballasts, ANSI C82.11-1993, 1993.
[37] ST Microelectronics, “CFL/TL Ballast Driver Preheat and Dimming,” L6574 datasheet, Sep. 2003.