| 研究生: |
余道承 Yu, Tao-Cheng |
|---|---|
| 論文名稱: |
應用於頻率偏移調變並增強水平與角度錯位之雙頻混合耦合線圈最佳化設計 Optimization Design of Dual Frequency Mixed Coupling Coils to Enhance Lateral and Angular Misalignment Tolerance for Frequency Shift Keying Modulation Application |
| 指導教授: |
楊慶隆
Yang, Ching-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 雙頻共振 、混合耦合 、偏移 、無線能量與資料傳輸 、無線傳能 |
| 外文關鍵詞: | Dual-resonant frequency, mixed coupling, misalignment, wireless power and data transfer (WPDT), wireless power transfer (WPT) |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一具有水平與角度偏移抵抗能力之雙頻共振的混合耦合線圈(Mixed coupling coil, MCC),而其可被應用於頻率偏移調變之無線能量與資料傳輸應用中。
考量到磁耦合與電耦合之互補性,本文所提出的混合耦合線圈得以在水平與角度偏移下仍保有良好的傳能效率。相較於過往的混合耦合線圈文獻中所提到的模型,本文提出一更完整、精準的等效電路模型成功的闡述了其雙頻共振與容忍偏移等特性。此外,本文亦藉由數學模型探討了混合耦合之特性,並提出一適合的最佳化流程。
最後,本文所提出的混合耦合線圈面積為74×74 mm2。且在以低共振頻率傳能時,相較於傳統線圈,S21下降率在水平偏移60 mm時與角度偏移90 ˚時分別26.4 %與78.1 %的提升。而本文所提出的MCC在以高共振頻率傳能時,其在60 mm的水平偏移下S21僅有16.5 %的下降,而對於角度偏移則可以說是完全免疫。
This thesis proposes a dual-resonant mixed coupling coil (MCC) which have lateral and angular misalignment immunity, and can be applied in frequency shift keying wireless power and data transfer systems.
By considering the duality property of electrical coupling and magnetic coupling, MCCs make the efficiency of wireless power transfer nearly insensitive to axial and angular misalignment. Comparing to MCC model in literatures, a more complete, sophisticated equivalent circuit demonstrates its dual-resonant characteristic and lateral and angular misalignment tolerable features. Also, the mixed coupled characteristics is mathematically analyzed, and an optimization flow of proposed MCC is suggested.
Finally, the proposed MCC occupies 74×74 mm2. While MCC transfers energy with low resonant frequency, comparing to traditional printed spiral coils, S21 decline rate improves 26.4 % and 78.1 % while axially misaligned 60 mm and angularly misaligned 90˚, respectively. Furthermore, while proposed MCC transfers energy with high resonant frequency, S21 only drops 16.5 % with 60 mm lateral misalignment, and is totally flat within the whole ± 90˚ angular misalignment.
[1] N. Tesla, Colorado Springs – Notes, Nolit, Belgrade, 1978.
[2] W. C. Brown, J. R. Mims, and N. I. Heenan, “An Experiemental Microwave-Powered Helicopter,” IRE International Convention Record, v. 13, part 5, pp. 225-235, Mar. 1965.
[3] W. C. Brown, “The History of Power Transmission by Radio Waves,” IEEE Trans on Microwave Theory and Techniques, Sep. 1984.
[4] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless Power Transfer Via Strongly Coupled Magnetic Resonances,” Science express, vol. 317, no. 5834, pp. 83–86, Jul. 2007.
[5] A.M. Kuncel and W. M. Grill, “Selection of Stimulus Parameters for Deep Brain Stimulation,” Clin. Neurophysiol., vol. 115, no. 11, pp. 2431–2441, Nov. 2004.
[6] http://web.mit.edu/newsoffice/2007/wireless-0607.html
[7] W.-Q. Niu, J.-X. Chu, W. Gu, and A.-D. Shen, “Exact analysis of frequency splitting phenomena of contactless power transfer systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 6, pp. 1670–1677, Jun. 2013.
[8] R. D. Fernandes, J. N. Matos, and N. B. Carvalho, “Resonant electrical coupling: Circuit model and first experimental results,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 9, pp. 2983–2990, Sep. 2015.
[9] A. P. Sample, D. T. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544–554, Feb. 2011.
[10] T. C. Beh, M. Kato, T. Imura, S. Oh, and Y. Hori, “Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3689–3698, Sep. 2013.
[11] G. Lee, B. H. Waters, Y. G. Shin, J. R. Smith, and W. S. Park, “A reconfigurable resonant coil for range adaptation wireless power transfer,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 624–632, Feb. 2016.
[12] M. Fu, H. Yin, X. Zhu, and C. Ma, “Analysis and tracking of optimal load in wireless power transfer systems,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3952–3963, Jul. 2015.
[13] W.-S. Lee, W.-I. Son, K.-S. Oh, and J.-W. Yu, “Contactless energy transfer systems using antiparallel resonant loops,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 350–359, Jan. 2013.
[14] W.-S. Lee, K.-S. Oh, and J.-W. Yu, “Distance-insensitive wireless power transfer and near-field communication using a current-controlled loop with a loaded capacitance,” IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 936–940, Feb. 2014.
[15] X. Y. Zhang, C. -D. Xue and J. -K. Lin, “Distance-insensitive wireless power transfer using mixed electric and magnetic coupling for frequency splitting suppression, ” IEEE Trans. Microw. Theory Techn., vol. 66, no. 11, pp. 4307-4316, NOV. 2017.
[16] K. Fotopoulou and B. W. Flynn, “Wireless power transfer in loosely coupled links: Coil misalignment model,” IEEE Trans. Magn., vol. 47, no. 2, pp. 416–430, Feb. 2011.
[17] I. Cortes and W. -J. Kim, “Lateral Position Error Reduction Using Misalignment-Sensing Coils in Inductive Power Transfer Systems, ” IEEE/ASME Trans. on Mechatronics, vol. 23, no. 2, pp. 875 - 882, Apr. 2018.
[18] Y. Gao, C. Duan, A. A. Oliveira, A. Ginart, K. B. Farley, and Z. T. H. Tse, “3-D coil positioning based on magnetic sensing for wireless EV charging,” IEEE Trans. Transp. Electrification, vol. 3, no. 3, pp. 578–588, Sep. 2017.
[19] J. P. K. Sampath, A. Alphones, and D. M. Vilathgamuwa, “Figure of merit for the optimization of wireless power transfer system against misalignment tolerance,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4359–4369, Jun. 2017.
[20] S. G. Lee, H. Hoang, Y. H. Choi, and F. Bien, “Efficiency improvement for magnetic resonance based wireless power transfer with axial misalignment,” Electron. Lett., vol. 48, no. 6, pp. 339–340, Mar. 15, 2012.
[21] T. Campi, S. Cruciani, F. Maradei, and M. Feliziani, “Near-field reduction in a wireless power transfer system using lcc compensation,” IEEE Transactions on Electromagnetic Compatibility, vol 59, no. 2, Jan. 2017.
[22] B. Kallel, O. Kanoun, H. Trabelsi, “Large air gap misalignment tolerable multi-coil inductive power transfer for wireless sensors,” IET Power Electron., Vol. 9, No. 8, pp. 1768–1774, 2016.
[23] O. Jonah, S. V. Georgakopoulos, and M. M. Tentzeris, “Orientation insensitive power transfer by magnetic resonance for mobile devices,” in Proc. IEEE Wireless Power Transfer, pp. 5–8, May 15–16, 2013.
[24] W. Ng, C. Zhang, D. Lin, and S. Y. R. Hui, “Two- and three-dimensional omnidirectional wireless power transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4470–4474, Sep. 2014.
[25] R. Fernandes, J. Matos, and N. Carvalho, “Behavior of resonant electrical coupling in terms of range and relative orientation,” in Proc. Wireless Power Transfer Conf., Jeju, Korea, May 2014, pp. 118–121.
[26] D. Liu, H. Hu, and S. V. Georgakopoulos, “Misalignment sensitivity of strongly coupled wireless power transfer systems,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5509–5519, Jul. 2017.
[27] J. C. Schuder and H. E. Stephenson, “Energy transport to a coil which circumscribes a ferrite core and is implanted within the body,” IEEE Trans. Bio-Med. Eng., vol. BME-12, no. 3/4, pp. 154–163, Jul.–Oct. 1965.
[28] D. Ahn and S. Hong, “Wireless power transmission with self-regulated output voltage for biomedical implant,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2225–2235, May 2014.
[29] S. Y. R. Hui and W.W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp 620–627, May 2005.
[30] E. Bou, R. Sedwick and E. Alarcon “Scalability Analysis of SIMO Non-Radiative Resonant Wireless Power Transfer Systems based on Circuit Models, ” 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, Jul. 2015.
[31] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151–2169, May 2013.
[32] J. Sallan, J. L. Villa, A. Llombart, and J. F. Sanz, “Optimal design of ICPT systems applied to electric vehicle battery charge,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2140–2149, Jun. 2009.
[33] S. Chopra and P. Bauer, “Driving range extension of EV with on-road contactless power transfer: A case study,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 329–338, Jan. 2013.
[34] S. Ping, A. P. Hu, S.Malpas, and D. Budgett, “A frequency control method for regulating wireless power to implantable devices,” IEEE Trans. Biomed. Circuits Syst., vol. 2, no. 1, pp. 22–29, Mar. 2008.
[35] V. J. Brusamarello, Y. B. Blauth, R. de Azambuja, I. Muller, and F. R. de Sousa, “Power transfer with an inductive link and wireless tuning,” IEEE Trans. Instrum. Meas., vol. 62, no. 5, pp. 924–931, May 2013.
[36] Z. Wang, Y. Li, Y. Sun, C. Tang, and X. Lv, “Load detection model of voltage-fed inductive power transfer system,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5233–5243, Nov. 2013.
[37] R. Johari, J. V. Krogmeier, and D. J. Love, “Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1774–1783, Apr. 2014.
[38] G. Yilmaz, O. Atasoy, and C. Dehollain, “Wireless energy and data transfer for in-vivo epileptic focus localization,” IEEE Sens. J., vol. 13, no. 11, pp. 4172–4179, Nov. 2013.
[39] G.Wang, P.Wang, Y. Tang, andW. Liu, “Analysis of dual band power and data telemetry for biomedical implants,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 3, pp. 208–215, Jun. 2012.
[40] G. Simard, M. Sawan, and D. Massicotte, “High-speed OQPSK and efficient power transfer through inductive link for biomedical implants,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 3, pp. 192–200, Jun. 2010.
[41] J. Hirai, K. Tae-Woong, and A. Kawamura, “Study on intelligent battery charging using inductive transmission of power and information,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 335–345, Mar. 2000.
[42] J. Hirai, K. Tae-Woong, and A. Kawamura, “Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 13–20, Jan. 2000.
[43] J. Hirai, K. Tae-Woong, and A. Kawamura, “Study on crosstalk in inductive transmission of power and information,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1174–1182, Dec. 1999.
[44] E. L. Van Boheemen, J. T. Boys, and G. A. Covic, “Dual-tuning IPT systems for low bandwidth communications,” in Proc. IEEE Conf. Ind. Electron. Appl., Harbin, China, 2007, pp. 586–591.
[45] J. Wu, C. Zhao, Z. Lin, J. Du, Y. Hu and X. He, "Wireless Power and Data Transfer via a Common Inductive Link Using Frequency Division Multiplexing," IEEE Trans. Industrial Electron., vol. 62, no. 12, pp. 7810-7820, Dec. 2015.
[46] M. -L. Kung and K. -H. Lin, “Dual-Band Coil Module With Repeaters for Diverse Wireless Power Transfer Applications, ” IEEE Trans. Microw. Theory Tech., vol. 66, no. 1, pp. 332–345, Jan. 2018.
[47] M. Dionigi, M. Mongiardo, and R. Perfetti, “Rigorous network and Full-Wave electromagnetic modeling of wireless power transfer links,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 1, pp. 65–75, Jan. 2015.
[48] K. B. S. Kiran, S. Brahma, S. K. Parida, and R. K. Behera, "Analysis of inductive resonant coupled WPT system using Reflected Load Theory," in 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2014, pp. 1-6.
[49] M. Kiani and M. Ghovanloo, "The Circuit Theory Behind Coupled-Mode
Magnetic Resonance-Based Wireless Power Transmission," Circuits and
Systems I: Regular Papers, IEEE Transactions on , vol.59, no.9,
pp.2065,2074, Sept. 2012.
[50] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York, NY, USA: Wiley, 2011.
[51] I. Awai and Y. Zhang, “Overlap integral calculation of resonator coupling, ” Proceedings or 12th International Symposium on Antenna Technology and Applied Electromagnetics and URSI/CNC Conference, pp. 589-592, Montreal, Jul. 2006.
[52] U. M. Jow and M. Ghovanloo, “Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission,” IEEE Trans. Biomed. Circuits Syst., vol. 1, no. 3, pp. 193–202, Sep. 2007.