簡易檢索 / 詳目顯示

研究生: 彭瀛全
Peng, Ying-Chuan
論文名稱: 具輸入飽和之奇異非線性隨機混合系統狀態空間自調式控制
State-Space Self-Tuning Control for Singular Nonlinear Stochastic Hybrid Systems Containing Saturating Actuators
指導教授: 蔡聖鴻
Tsai, S. H. Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 84
中文關鍵詞: 狀態空間自調式控制混沌系統奇異系統輸入飽和穩態觀測器
外文關鍵詞: Chaotic system, Singular system, Steady state observer, Input saturation, State-space selftuning control
相關次數: 點閱:85下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一種對具輸入飽和連續時間奇異非線性自調式的最佳追蹤控制器設計方法在本論文中首次被提出。其中系統參數未知,存在脈衝模點,有可量測的雜訊,決定性的雜訊和不可得知的狀態。奇異非線性系統存在不穩定的脈衝模點,和系統輸出變化快速的非線性混沌特性,會使控制變得複雜許多。首先,為奇異非線性隨機狀態空間自調式控制建構以ARMA基礎的模型,來估測系統的狀態,並設計最佳追蹤控制器,且證明對決定性雜訊仍具良好的追蹤特性。再者,在不改變已存在的系統架構下,利用附加迴路來改善由實際限制條件下的輸入飽和現象。最後,用離線參數判別所得之擴增型常數系統矩陣來當作穩態觀測器,設計具輸入飽和限制之最佳追蹤控制器,並證明此設計的穩定性。另外,在每章節的最後將分別以例子來說明所提出之控制器的效能。

    A state-space self-tuning control scheme for adaptive digital control of continuous-time singular nonlinear stochastic systems, which have unknown system parameters, measurement noises, deterministic noises, and inaccessible system states is first proposed in this thesis. The singular nonlinear system is mixed with chaos and singular system in unstable impulsive mode; therefore, it is more challenging for control. First, an adjustable auto-regressive moving average (ARMA)-based noise model with estimated states is constructed for state-space self-tuning control of singular nonlinear stochastic systems, then the optimal tracker is proposed. Under this proposed optimal tracker, the stability can also be shown for the hybrid system with the deterministic noise. Next, the conditioning dual-rate digital redesign scheme is developed, which contains a conditioning fast sampling rate digital controller for reducing the bump-transfer effects and a slow sampling rate digital redesign optimal tracker. Finally, a steady-state observer is based on some reasonable initial values for the system identification. As a result, it can be used to design an optimal tracker with saturation actuators. Illustrative examples are given to demonstrate the effectiveness of design methodologies.

    Chinese Abstract…………………………………………………………………. I Abstract…………………………………………………………………………... II List of Figures…………………………………………………..………………... VI Chapter 1 Introduction 1.1Introduction…………………………………………............. 1-1 1.2 Organization of the thesis……………………………………………. 1-5 2 State-Space Self-Tuning Control for Singular Nonlinear Stochastic Hybrid Systems Containing Deterministic Noise…………………………. 2-1 2.1 The Prediction-Based Digital Method.……………………………….. 2-1 2.1.1 Analog quadratic tracker………………………………………. 2-2 2.1.2 Derivation of the prediction-based digital controller…………2-2 2.1.3 Derivation of the prediction-based digital observer…………..2-6 2.2 ARMAX Models for Multivariable Singular Nonlinear Stochastic Systems………………………………………………………………….2-7 2.3 State-Space Innovation Models for Singular Nonlinear Stochastic Systems………………………………………………………………...2-12 2.3.1 Continuous-time system versus discrete-time system…………………………………………………………...2-12 2.3.2 Preliminary structures of discrete-time state-space self-tuners……………………………………………………….2-14 2.4 Hybrid State-Space Self-Tuner for Singular Nonlinear Stochastic System…………………………………………………………………2-18 2.5 An Illustrative Example……………………………….........................2-23 3 State-Space Self-Tuning Control for Singular Nonlinear Stochastic Hybrid Systems Containing Saturating Actuators………………………..3-1 3.1 Introduction…………………………………………………………….3-1 3.2 The Prediction-Based Digital Redesign Dual-Rate Conditioning-Transfer Method……………………………………….3-4 3.2.1 Derivation of the prediction-based slow-rate digital controller.......................................................................................3-4 3.2.2 Digitally Redesigned Fast-Rate Bump-less-Transfer Tracker………………………………………………………….3-7 3.3 Hybrid State-Space Self-Tuner for Singular Nonlinear Stochastic System containing saturating actuators………………………………3-11 3.3.1 Dual-rate self-tuning with saturating actuators…..………….3-11 3.3.2 New self-tuning-base dual rate steady state observer ………..3-15 3.4 An Illustrative Example………………………………………………..3-17 4 Conclusions………………………………………………………………….4-1 List of Figures Figure 2.1 (a) Original analog system with analog controller (b) Digital control system……………………………………………………...2-5 2.2 Structure of the hybrid state-space self-tuning control ……………………….2-21 2.3 (a) The deterministic singular nonlinear system, plotted in the space with simulation time 10 sec………………………………………… 2-26 (b) The deterministic singular system, plotted in the space with simulation time 10 sec……………………………………………………..2-26 (c) Time domain response deterministic singular nonlinear system…………...2-26 (d) Deterministic noise input …………………………………………...2-26 2.4 (a) The desired reference , a periodic orbit embedded within the deterministic chaotic attractor of Chen’s system cascade singular system, plotted in the and space………………………..2-27 (b) The deterministic singular cascade chaotic of Chen’s system time series of the desired reference orbit ……………………………..…………2-27 2.5 The sampling and holding period with proper initial conditions (a) Trajectories of and , , plotted in space……………………………………………………………………..2-32 (b) Trajectories of and , , plotted in space……………………………………………………………………..2-32 (c) (d) (e) (f) (g) (h)Time series of and , ……………2-32 (i) Time series of ………………………………………….2-33 2.6 The sampling and holding period with proper initial conditions (a) Trajectories of and , , plotted in space…………………………………………………………………...2-34 (b) Trajectories of and , , plotted in space…………………………………………………………………...2-34 (c) (e) (f) (g) (h)Time series of and , ……………..2-34 (i ) Time series of ………………………………………..2-35 2.7 The sampling and holding period with proper initial conditions (a) Trajectories of and , , plotted in space…………………………………………………………………...2-36 (b) Trajectories of and , , plotted in space…………………………………………………………………...2-36 (c) (e) (f) (g) (h)Time series of and , …………….. 2-36 (i) Time series of ……………………………………….2-37 3.1 Linear conditioning from ………………………………………...3-3 3.2 Internal model control (IMC)………………………………………………..3-3 3.3 (a) Original analog system with analog controller………………………….. 3-5 (b) Digital control system…………………………………………………..3-5 3.4 The control law of wind-up system, where represents the upper bound of linear region of the actuator……………………………………….3-6 3.5 Desired digitally redesigned sampled-data system………………………….3-10 3.6 A fictional system……………………………………………………………3-10 3.7 (a) Structure of the hybrid state-space self-tuning control…………………..3-13 (b) Dual-rate state space self-tuning control with input saturation actuator………………………………………………………………………3-14 3.8 Dual-rate self-tuning control with input saturation actuator self-tuning-base dual rate steady state Kalman Filter…………………………………………3-17 3.9 (a) The deterministic singular nonlinear system, plotted in the space with simulation time 10 sec…………………………………………3-20 (b)The deterministic singular system, plotted in the space with simulation time 10 sec……………………………………………...3-20 (c) Time domain response deterministic singular nonlinear system………...3-20 (d) Deterministic noise input ………………………………………..3-20 3.10 (a) The desired reference , a periodic orbit embedded within the deterministic chaotic attractor of Chen’s system cascade singular system, plotted in the and space………………3-21 (b) The deterministic singular cascade chaotic of Chen’s system time series of the desired reference orbit ……………………………………...3-21 3.11 The sampling and holding period with proper initial conditions with input saturation actuator. (a) Trajectories of and , , plotted in space……………………………………………………………………..3-24 (b) Trajectories of and , , plotted in space…………………………………………………………3-24 (c)(d) (e) (f) (g) (h)Time series of and , ……………3-24 (i) Time series of with input saturation actuator…………………...3-24 (j) Time series of with input saturation actuator…………3-25 3.12 Self-tuning-Base Dual Rate Steady state Kalman Filter with the sampling and holding period with proper initial conditions and input saturation actuator. (a) Trajectories of and , , plotted in space……………………………………………………………………..3-26 (b) Trajectories of and , , plotted in space……………………………………………………………………..3-26 (c) (d) (e) (f) (g) (h)Time series of and , …………...3-26 (i) Time series of with input saturation actuator……………………3-27 (j) Time series of with input saturation actuator…………. 3-27

    [1] Anderson, B. D. O. & Moore, J. B. Optimal Filtering, NJ: Prentice-hall, 1979.
    [2] Anderson, B. D. O. & Moore, J. B. Linear Optimal Control, NJ: Prentice-Hall, 1990.
    [3] Äström, K. J. Introduction to Stochastic Control Theory, NY: 1970.
    [4] Äström, K. J. & Wittenmark, B. Adaptive Control, NY: Addison-Wesley, 1989.
    [5] B. d’Andrea-Novel, G..Bastin and G.Campion, “Modeling and control of nonholonomic wheeled mobile robots,” Proc. of IEEE Int. Conf. Robotics and Auto., pp.1130-1135, 1991.
    [6] Bloch, A.M., Reyhanoglu, M. and McClamroch, N.H. “Control and stabilization of nonholonomic dynamic systems, ” IEEE Trans. AC-37, PP.1746-1757,1992.
    [7] Chen, G. & Dong, X. From Chaos to Order: Methodologies, Perspectives and Applications, Singapore: World Scientific, 1998.
    [8] Chen, G.. Controlling Chaos and Bifurcations in Engineering Systems, Boca Raton: CRC Press, 1999.
    [9] Chen, G. & Ueta, T. “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos 9, 1465-1466, 1999.
    [10] Chen, G. & Ogorzalek, M. J. “Theme issue on chaos control and synchronization,” International Journal of Bifurcation and Chaos, March/April issues, 2000.
    [11] Chui, C. K. & Chen, G. Kalman Filtering with Real-Time Applications,Heidelberg: Springer-Verlag, 3rd edition, 1999.
    [12] Cobb, D. “Descriptor variable systems and optimal state regulation ”, IEEE Trans. AC-28, No. 5, pp.601-611,1983.
    [13] Elliott, H. “Hybrid adaptive control of continuous-time systems,” IEEE Trans. AC-27, 419-426, 1982.
    [14] Edwards, C. and I. Postlethwaite, “Anti-windup and bumpless-transfer schemes,” Automatica, vol. 34, pp. 199-210, 1998.
    [15] Fortescue, T. R., Kershenbaum, L. S. & Ydstie, B. E. “Implementation of self-tuning regulators with variable forgetting factors,” Automatica 17, 831-835, 1981.
    [16] Gawthrop, P. J. “Hybrid self-tuning control,” IEE Proc. D., Control Theory & Appl. 127, 229-236, 1980.
    [17] Gawthrop, P. J. Continuous-time Self-tuning Control, New York: Research Studies Press, 1987.
    [18] Hang, C. C., Lim, K. W. & Chong, B. W. “A dual-rate adaptive digital smith predictor”, Automatica 25, 1-16, 1989.
    [19] Hanus, R. & Kinnaert, M. and Henrotte, J. L. “Conditioning technique, a general anti-windup and bumpless transfer method,” Automatica, vol. 23, pp. 729-739, 1987.
    [20] J.Y. Lin and N.U. Ahmed, “Approach to controllability problems for singular system,” I. J. Control, Vol.22, pp.675-690,1991.
    [21] Kailath, T. “An innovation approach to least-squares estimation. Part I: Linear filtering in additive white noise,” IEEE Trans. AC-13, 646-655 ,1968.
    [22] Kanniah, J., Malik, O. P. & Hope, G. S. “Microprocessor-based universal regulator using dual-rate sampling,” IEEE Trans. IE-31, 306-312, 1984.
    [23] Keller, J. P. & Anderson, B. D. O. “A new approach to the discretization of continuous-time
    controllers,” IEEE Trans. AC-37, 214-223, 1992.
    [24] Kuo, B. C. Digital Control Systems, NY: Holt, Rinehart and Winston, 1980.
    [25] Kumar A. and Daoitidis, P, “Control of nonlinear differential-algebraic process systems, Proc. of ACC,Baltimore,” Vol.1, pp.330-335, 1994.
    [26] Kothare, M. V. & Campo, P. J. & Morari, M. and Nett, C. N. “A unified framework for the study of anti-windup design,” Automatica, vol. 30, pp. 1869-1883, 1994.
    [27] Landau, Ioan Dor’e System Identification and Control Design, NJ: Prentice Hall, Englewood Cliffs, 1990.
    [28] Lewis, F. L. Optimal Control, NY : Wiley & Sons,1986a.
    [29] Lewis, F. L. Optimal Estimation, NY : Wiley, 1986b.
    [30] Lewis, F. L. Applied Optimal Control and Estimation: Digital Design and Implementation, NJ: Prentice-Hall, Englewood Cliffs, 1992.
    [31] Ljung, L. “Convergence analysis of parameter identification methods, IEEE Trans. AC-23, 770-783, 1978.
    [32] Ljung, L. & Söderström, T. Theory and Practice of Recursive Identification, Cambridge, Massachusetts: MIT Press,1983.
    [33] Liu Xiaoping, “On linearization of nonlinear singular control systems,” Proc. of ACC, San Francisco, Vol.3, pp.2284-2287,1993.
    [34] Liu Xiaoping, “Solvability of nonlinear singular systems: part Ⅰ, the case without inputs,” Proc. of Acc, 1995.
    [35] Liu Xiaoping, “Solvability of nonlinear singular systems: part Ⅱ, the case without inputs,” Proc. of Acc, 1995.
    [36] L.S.You and Chen, B.S., “Tracking control designs for both holonomic and non-holonomic constrained mechanical systems: a unified view point,” I.J. Control, Vol.58, pp.587-612, 1993.
    [37] Mita, T. “Optimal digital feedback control system counting computation time of control laws,” IEEE Trans. AC-30, 542-548, 1985.
    [38] McClamroch, N.H. and Wang, D.W. “Feedback stabilization and tracking of constrained robots,” IEEE Trans. Auto. Control, Vol.33, pp.419-426,1998.
    [39] McClamroch, N.H. , “Feedback stabilization of control systems described by a class if nonlinear differential-algebraic equations,” Systems & Control Letters, 15, 1990.
    [40] McClamroch, N.H. and Wang, D.W, “Feedback stabilization and tracking of constrained robots,” IEEE Trans. Auto. Control, Vol.33, pp419-426, 1988.
    [41] Narendra, K., Khalifa, I. H. & Annaswamy, A. M. “Error models for stable hybrid adaptive systems,” IEEE Trans. AC-30, 339-347, 1985.
    [42] Peng, Y. & Vrancic D. and R. Hanus, “Anti-windup, bumpless, and conditioned transfer techniques for PID controllers,” IEEE Control Systems Magazine, vol. 16, pp. 48-57, 1996.
    [43] Polites, M. E. “Ideal state reconstructor for deterministic digital control systems,” International Journal of Control, vol. 49, pp. 2001-2011, 1989.
    [44] Shieh, L. S. & Tsay, Y. T. “Transformations of a class of multivariable control systems to block companion forms,” IEEE Trans. AC-27, 199-203, 1982.
    [45] Shieh, L. S., Wang, C. T. & Tsay, Y. T. “Fast suboptimal state-space self-tuner for linear stochastic multivariable systems,” IEE Proc. D, Control Theory & Appl. 129(4), 123-128, 1982.
    [46] Shieh, L. S., Wang, C. T. & Tsay, Y. T. “Multivariable state feedback self-tuning controllers,” Stochastic Anal. & Appl. 3(2),189-212, 1985.
    [47] Shieh, L. S., Dib, H. M. & Ganesan, S. “Linear quadratic regulators with eigenvalue placement in a specified region,” Automatica 24, 819-823, 1988.
    [48] Shieh, L. S., Bao, Y. L. & Chang, F. R. “State-space self-tuning regulators for general multivariable stochastic systems,” IEE Proc. D., Control Theory & Appl. 136, 17-27, 1989.
    [49] Shieh, L. S., Zhao, X. M. & Sunkel, J. W. “Hybrid state-space self-tuning control using dual-rate sampling,” IEE Proc. D., Control Theory & Appl. 138, 50-58, 1991.
    [50] Shieh, L. S., Zhang, J. L. & Sunkel, J. W. “ A new approach to the digital redesign of continuous-time controllers,” Control – Theroy and Advance Techniques 8, 37-57, 1992.
    [51] Shieh, L. S., Wang, Y. J. & Sunkel, J. W. “Hybrid state-space self-tuning control of uncertain linear systems,” IEE Proc. D., Control Theory & Appl. 140(2), 99-110, 1993.
    [52] Shieh, L. S., Wang, W. & Tsai, J. S. H. “Optimal digital redesign of hybrid uncertain systems using genetic algorithms,” IEE Proc. D., Control Theory & Appl. 146(2), 119-130, 1999.
    [53] Shieh, L. S. G. Chen and J. S. H. Tsai, “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems,” International Journal of System Sciences, vol. 23, pp. 839-852, 1992.
    [54] S. Kawaji and E.Z. Taha, “Feedback linearization of a class of nonlinear descriptor systems,” Proc. of the 33rd CDC, Vol.4, pp.4035-4037, 1994, Lake Buena Vista, FL.
    [55] Teixeira, M. C. M. & Zak, S. H. “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Trans. on Fuzzy Systems 7, 133-142, 1999.
    [56] Tsay, Y. T. & Shieh, L. S. “State-space approach for self-tuning feedback control with pole assignment,” IEE Proc. D, Control Theory & Appl. 123, 93-101, 1981.
    [57] Tsay, Y. T., Shieh, L. S. & S. Barnett, Structural Analysis and Design of Multivariable Control Systems: an Algebraic Approach, Berlin, Heidelberg: Springer-Verlag, 1988.
    [58] Tsai, J.S.H. & Wang C.T. and Shieh, L.S. “The optimal regional-pole-placement design method for singular systems”, J. Control Systems Techno. Vol. 1,No. 1, pp.61-73, 1993.
    [59] Warwick, K. “Self-tuning regulators – a state-space approach,” Int. J. Control 33, 839-858, 1981
    [60] Westen, P. and Postlethwaite, I. “Linear conditioning for systems containing saturating actuators,” Automatica, vol. 36, pp. 1347-1354, 2000.
    [61] W.C. Rheinboldt, “On the existence and uniqueness of solutions of nonlinear semi-implicit differential-algebraic equations,” Nonlinear Analysis, Theory, Methods & Appl., Vol.16, p.642-661, 1991.
    [62] Yu, X. & Xia, Y. “Detecting unstable periodic orbits in Chen’s chaotic attractor,” International Journal of Bifurcation and Chaos, in press, 2000.
    [63] Zhao, X. M., Shieh, L. S, Sunkel, J. W. & Yuan, Z. Z. “Self-tuning control of attitude and momentum management for the space station,” AIAA J. Guidance, Control & Dynamics 15, 17-27, 1992.
    [64] Guo, Shu-Mei, “Effective Digital Chaotic Orbit Tracker and Kalman Filtering for Nonlinear Stochastic Hybrid Systems,” Ph. D. Dissertation, University of Houston, May, 2000,
    [65] Chen, Yong-Sheng,“Digital Redesign of Anti-Wind-Up Controller for Sampled-data Systems,”Ms. D. thesis, NCKU, June, 2001.

    下載圖示 校內:2004-06-27公開
    校外:2004-06-27公開
    QR CODE